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A Notebook of Statistical and Probabilistic Formulae,  

Methods and Derivations 

This is a somewhat idiosyncratic collection based on quantities and methods which I 

happened to have used over the years. In my personal experience the probabilistic material 

derives mostly from engineering applications whereas the statistical quantities and methods 

relate to the analysis of psychology data. Both are of more general applicability. 

Notation: Matrices are denoted by round brackets, e.g., (𝑀), and column matrices (“vectors”) 

are denoted by a bar over the symbol, e.g., �̅�. Transpose is denoted by 𝑇, hence �̅�𝑇 is a row 

matrix (row “vector”). 
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1. Definitions of Basic Terms 

1.1 Probability Density Function (pdf) 

The probability that a continuous variable, 𝑥, lies within the small range 𝑥 to 𝑥 + 𝑑𝑥 is 

𝑃(𝑥)𝑑𝑥. This defines the probability density function (pdf), 𝑃(𝑥), for the variable 𝑥. A pdf 

necessarily integrates to unity, 

∫ 𝑃(𝑥)𝑑𝑥
+∞

−∞
= 1              (1.1) 

i.e., it is certain that the variable has some value. (The lower limit of −∞ is replaced by 0 for 

variables which cannot be negative).  

In practice, it is rarely the case that the exact underlying pdf is known. Instead a functional-

form of pdf which appears qualitatively suitable is assumed, invariably including unknown 

parameters (mean, variance, etc.). Typically the pdf must then be estimated from a finite 

database of 𝑥 values, {𝑥𝑖 , 𝑖𝜖[1, 𝑁]}. A number of ways of “best fitting” are then available, but 

it is generally best to fit to the cumulative probability function (see §1.2) rather than directly 

to the pdf. It is important to appreciate that this procedure involves a number of different 

assumptions and approximations, 

• The database {𝑥𝑖, 𝑖𝜖[1, 𝑁]} must be an unbiased (representative) sample of the underlying 

population; 

• Approximation is inherent in the assumed functional form of pdf (e.g., a normal 

distribution) if the underlying pdf is actually different; 

• For any finite 𝑁 the estimated pdf will be subject to random statistical errors (a second 

database of 𝑁 samples will produce a different result, fractional differences typically 

being of order 1/√𝑁).  

1.2 Cumulative Probability Function (cpf) 

The probability that a continuous variable, 𝑥, takes a value less than or equal to 𝑋 defines the 

cumulative probability function (cpf), 𝑃𝑐𝑢𝑚(𝑋). The cpf is found in terms of the pdf from, 

    𝑃𝑐𝑢𝑚(𝑋) = ∫ 𝑃(𝑥)𝑑𝑥
𝑋

−∞
              (1.2) 

The lower limit of −∞ is replaced by 0 for variables which cannot be negative. The reverse-

cumulative distribution, �̃�𝑐𝑢𝑚(𝑋), is the probability that 𝑥 takes a value greater than or equal 

to 𝑋, 

    �̃�𝑐𝑢𝑚(𝑋) = ∫ 𝑃(𝑥)𝑑𝑥
+∞

𝑋
              (1.3) 

so that 𝑃𝑐𝑢𝑚(𝑋) + �̃�𝑐𝑢𝑚(𝑋) = 1. 

1.3 Mean 

In this notebook the word “mean” is shorthand for the arithmetic mean, and is synonymous 

with “average” in common parlance. It is sometimes called the “expected value” or the 

“expectation value”. The algebraic definition of the mean of the variable 𝑥, written �̄�, whose 

pdf is 𝑃(𝑥), is, 

     �̅� = ∫ 𝑥𝑃(𝑥)𝑑𝑥
+∞

−∞
              (1.4) 
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From here on it is to be understood that the lower integration limit of −∞ is replaced by 0 for 

variables which cannot be negative.  

For a finite sample, {𝑥𝑖, 𝑖𝜖[1, 𝑁]}, the mean, or average, is defined by, 

〈𝑥〉 =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1               (1.5) 

Note that 〈𝑥〉 is only an estimate of the underlying �̅� if the database is unbiased 

(representative). The fractional error (i.e., 〈𝑥〉 − �̅�) will typically be proportional to 1/√𝑁.  

1.4 Median 

The median of a variable 𝑥 with pdf 𝑃(𝑥) is the value 𝑥𝑚𝑒𝑑 which splits the pdf into two 

regions whose probability is 0.5, i.e., is such that, 

    𝑃𝑐𝑢𝑚(𝑥𝑚𝑒𝑑) = �̃�𝑐𝑢𝑚(𝑥𝑚𝑒𝑑) = 0.5             (1.6) 

For a discrete set of sampled values, {𝑥𝑖 , 𝑖𝜖[1, 𝑁]}, the median 𝑥𝑚𝑒𝑑 is such that an equal 

number of sampled values are less than 𝑥𝑚𝑒𝑑 as are greater than 𝑥𝑚𝑒𝑑. Strictly this definition 

fails, or fails to be unique, in some cases. For example the median of 1,2,3,3,4 is usually 

taken to be 3, whilst the median of 1,2,8,9 is usually taken to be 5.  

1.5 Mode 

The mode of a pdf 𝑃(𝑥) is the value of 𝑥 at the maximum of 𝑃(𝑥). Hence the mode is the 

most probable value of 𝑥.  

1.6 Standard Deviation  

The standard deviation, 𝜎𝑥, of a continuous random variable, 𝑥, is a measure of the spread of 

its pdf about its mean. It is defined as the root-mean-square (rms) of the deviation from the 

mean, thus, 

    𝜎𝑥 = √∫ (𝑥 − �̅�)2𝑃(𝑥)𝑑𝑥
+∞

−∞
              (1.7) 

The standard deviation may be divergent for some pdfs. For these pdfs, referred to here as 

“non-” distributions (§2.4, §2.5 and §2.14 are examples), the standard deviation is not a 

suitable measure of their spread.  

The standard deviation of a finite sample {𝑥𝑖 , 𝑖𝜖[1, 𝑁]} is defined by, 

𝜎𝑥 = √
1

𝑁−1
∑ (𝑥𝑖 − 〈𝑥〉)2𝑁

𝑖=1               (1.8) 

The same notation, 𝜎𝑥, is used in both (1.7) and (1.8) where no confusion will arise, but it is 

important to note that (1.8) is, at best, only an approximation for (1.7). If the finite database 

{𝑥𝑖, 𝑖𝜖[1, 𝑁]} is the whole population then (1.8) would be replaced by, 

𝜎𝑥 = √
1

𝑁
∑ (𝑥𝑖 − 〈𝑥〉)2𝑁

𝑖=1               (1.9) 

1.7 Variance 

The variance is the square of the standard deviation, 𝜎𝑥
2. 
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1.8 Coefficient of Variation 

The coefficient of variation (CoV) is the standard deviation normalised by the mean, 

    CoV = 
𝜎𝑥

�̅�
 or CoV = 

𝜎𝑥

⟨𝑥⟩
           (1.12) 

1.9 Pearson Correlation Coefficient 

The Pearson correlation coefficient between two random variables 𝑥 and 𝑦, denoted 𝐶𝑥𝑦, 

expresses the extent to which they are linearly related. Variables with non-zero correlation 

cannot be described by independent pdfs like 𝑃𝑥(𝑥) and 𝑃𝑦(𝑦). Instead they have a joint 

probability density function, 𝑃(𝑥, 𝑦), in which the probability of the variables being within 

the ranges 𝑥 to 𝑥 + 𝑑𝑥 and 𝑦 to 𝑦 + 𝑑𝑦 is 𝑃(𝑥, 𝑦)𝑑𝑥𝑑𝑦. The correlation coefficient is defined 

by, 

   𝐶𝑥𝑦 =
1

𝜎𝑥𝜎𝑦
∫ ∫ (𝑥 − �̅�)(𝑦 − �̅�)𝑃(𝑥, 𝑦)

∞

−∞

∞

−∞
𝑑𝑥𝑑𝑦          (1.13) 

The generalisation of (1.7) for the variance is then 𝜎𝑥
2 = ∫ ∫ (𝑥 − �̅�)2𝑃(𝑥, 𝑦)𝑑𝑥

+∞

−∞
𝑑𝑦

+∞

−∞
. 

Note that if the joint pdf is separable, i.e., if we can write 𝑃(𝑥, 𝑦) = 𝑃𝑥(𝑥)𝑃𝑦(𝑦), then it 

follows immediately from (1.4) and (1.13) that 𝐶𝑥𝑦 = 0.  

In practice the Pearson correlation coefficient might be estimated from a random set of pairs 

of data {(𝑥𝑖, 𝑦𝑖), 𝑖𝜖[1, 𝑁]} in which case an estimate of the underlying correlation is, 

   𝐶𝑥𝑦 ≈
∑ (𝑥𝑖−⟨𝑥⟩)𝑖 (𝑦𝑖−⟨𝑦⟩)

√∑ (𝑥𝑖−⟨𝑥⟩)2 ∑ (𝑦𝑖−⟨𝑦⟩)2
𝑖𝑖

             (1.14) 

If there is a strict deterministic linear relationship between 𝑥 and 𝑦 then 𝐶𝑥𝑦 will be ±1 (the 

negative sign applying if the 𝑥, 𝑦 graph has negative slope). If the variables have no 

underlying linear relationship then 𝐶𝑥𝑦 = 0. Intermediate values, 0 < |𝐶𝑥𝑦| < 1, indicate an 

imperfect linear relationship.  

It is important to recognise that the Pearson correlation coefficient will only identify linear 

relationships. For example, if the variables are deterministically related by 𝑥 − ⟨𝑥⟩ ∝
(𝑦 − ⟨𝑦⟩)2 they will nevertheless have 𝐶𝑥𝑦 = 0 (assuming a 𝑦 distribution symmetrical about 

its mean).  

1.10 Rank 

If a set of values of a variable, {𝑥𝑖, 𝑖𝜖[1, 𝑁]}, are put in descending order, so that 𝑥1 ≥ 𝑥2 ≥

𝑥3 ≥ ⋯ then the subscript 𝑖 is the rank of the value 𝑥𝑖.  

1.11 Spearman Correlation Coefficient 

A set of pairs of values for two variables 𝑥 and 𝑦 can be replaced by a set of pairs of their 

ranks. The Spearman correlation coefficient between 𝑥 and 𝑦 is defined as the Pearson 

correlation coefficient between their ranks. The Spearman correlation coefficient is therefore 

a more general means of examining if the two variables have an underlying relationship 

which is not necessarily linear. The Spearman correlation coefficient will identify any 

underlying relationship in which 𝑦 varies monotonically with 𝑥. (“Monotonic” means that if 

𝑥 increases then 𝑦 increases, or stays the same).  
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1.12 Standard Error 

The term “standard error” relates to the accuracy of estimating the mean of an underlying 

distribution from a small sample. Thus, if 𝑛 samples are drawn from the population, the 

“standard error” is the error involved in estimating the true mean from the sample mean. The 

standard error is given by 𝜎/√𝑛 where, strictly, 𝜎 is the true (whole population) standard 

deviation. In practice, as this is generally unknown it is replaced by the standard deviation of 

the 𝑛 samples.  

1.13 Covariance 

The covariance between two variables, say 𝑥 and 𝑦, given a set of pairs of their values, 

{(𝑥𝑖, 𝑦𝑖), 𝑖𝜖[1, 𝑁]}  is 𝐶𝑜𝑣(𝑥, 𝑦) =
1

𝑁
∑ (𝑥𝑖 − 〈𝑥〉)(𝑦𝑖 − 〈𝑦〉)𝑁

𝑖=1 . From (1.11) and (1.14) it 

follows that the Pearson correlation coefficient is 𝐶𝑥𝑦 =
𝐶𝑜𝑣(𝑥,𝑦)

𝜎𝑥𝜎𝑦
. Given a set of 𝑚 variables, 

and 𝑁 data points at which all these variables are specified, both the pair-wise Pearson 

correlation coefficients and the pair-wise covariances form 𝑚 × 𝑚 matrices, the correlation 

or covariance matrices.  

2. Some Common PDFs 

2.1 The Normal (or Gaussian) PDF 

    𝑃(𝑥) =
1

𝜎𝑥√2𝜋
𝑒𝑥𝑝 {−

(𝑥−�̅�)2

2𝜎𝑥
2 }              (2.1) 

The median and mode are the same as the mean, �̅�. There is no closed-form expression for 

the cumulative probability function (which is also known as the error function). Table 1 lists 

confidence levels derived from the normal distribution, i.e., the probability of being within 

the stated number of standard deviations above the mean (𝑧). 

Table 1: Confidence Levels for the Normal Distribution 

z 
𝑃𝑐𝑢𝑚(⟨𝑥⟩ − 𝑧𝜎𝑥) 

= �̃�𝑐𝑢𝑚(⟨𝑥⟩ + 𝑧𝜎𝑥) 
Confidence Level* 

0 0.5 50% 

1 0.1587 84.13% 

1.2816 0.1 90% 

1.6449 0.05 95% 

2 0.0227 97.73% 

2.3263 0.01 99% 

3 0.00135 99.865% 

4 0.000032 99.9968% 

*The confidence level is defined by the single-sided value of 1 − 𝑃𝑐𝑢𝑚(⟨𝑥⟩ − 𝑧𝜎𝑥) = 1 − �̃�𝑐𝑢𝑚(⟨𝑥⟩ + 𝑧𝜎𝑥). It 

differs from the confidence interval which is double-sided. For example, the 95% confidence interval would 

have 𝑃𝑐𝑢𝑚(⟨𝑥⟩ − 𝑧𝜎𝑥) = �̃�𝑐𝑢𝑚(⟨𝑥⟩ + 𝑧𝜎𝑥) = 0.025and hence 𝑧 = 1.96.   

2.2 The Lognormal PDF 

The lognormal pdf is (almost) obtained by replacing 𝑥 in (2.1) with 𝑙𝑛(𝑥). But this would 

only be normalised if we also integrated (1.1) wrt 𝑙𝑛(𝑥), i.e., the integration measure would 

be 𝑑(𝑙𝑛(𝑥)) =
𝑑𝑥

𝑥
. Consequently we get a new factor of 𝑥 in the denominator. Also, the lower 
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limit of the integral would be 𝑙𝑛(𝑥) → −∞, i.e., 𝑥 → 0, and lognormal distributions are 

appropriate only when the variable cannot be negative. Hence, finally,  

    𝑃(𝑥) =
1

𝑠𝑥√2𝜋
𝑒𝑥𝑝 {−

(𝑙𝑛(𝑥)−𝜇)2

2𝑠2
}             (2.2) 

where the parameters 𝑠, 𝜇 are not the standard deviation and mean of 𝑥 but rather of 𝑙𝑛(𝑥). 

The standard deviation, mean, median, mode and CoV of 𝑥 are, 

𝜎𝑥 = √𝑒𝑥𝑝(𝑠2) − 1 ⋅ 𝑒𝑥𝑝 (𝜇 +
1

2
𝑠2)           (2.2a) 

�̅� = 𝑒𝑥𝑝 (𝜇 +
1

2
𝑠2)             (2.2b) 

𝑚𝑜𝑑𝑒𝑥 = 𝑒𝑥𝑝(𝜇 − 𝑠2)            (2.2c) 

𝑥𝑚𝑒𝑑 = 𝑒𝑥𝑝(𝜇)             (2.2d) 

𝐶𝑜𝑉 = √𝑒𝑥𝑝(𝑠2) − 1             (2.2e) 

2.3 Weibull PDF 

The Weibull pdf is a favourite with many statistical modellers. It applies to variables which 

cannot be negative and is given by, 

pdf:    𝑃(𝑥) =
𝑘

𝜆
(

𝑥

𝜆
)

𝑘−1

𝑒𝑥𝑝 {− (
𝑥

𝜆
)

𝑘

}             (2.3) 

cpf:    𝑃𝑐𝑢𝑚(𝑥) = 1 − 𝑒𝑥𝑝 {− (
𝑥

𝜆
)

𝑘

}            (2.3a) 

The parameters 𝑘 and 𝜆 must be non-negative, and the median, mode, mean and standard 

deviation are given by, 

    𝑥𝑚𝑒𝑑 = 𝜆(𝑙𝑛(2))
1

𝑘⁄
             (2.3b) 

    𝑚𝑜𝑑𝑒 = 𝜆 (
𝑘−1

𝑘
)

1
𝑘⁄
 for 𝑘 > 1 else 𝑚𝑜𝑑𝑒 = 0         (2.3c) 

    �̅� = 𝜆Γ (1 +
1

𝑘
)             (2.3d) 

    𝜎𝑥 = 𝜆√Γ (1 +
2

𝑘
) − (Γ (1 +

1

𝑘
))

2

           (2.3e) 

where Γ is the gamma function. Special cases are, 

𝑘 = 1 gives the simple exponential (or Boltzmann) distribution. 

𝑘 = 2 gives the Rayleigh distribution 

2.4 Student’s t PDF 

For any real 𝑡, 

pdf:    𝑃(𝑡) = 𝐴𝜈 (1 +
𝑡2

𝜈
)

−(1+𝜈)/2

              (2.4) 

where the normalising factor is given in terms of the gamma function by, 
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𝐴𝜈 =
Γ(

1+𝜈

2
)

√𝜋𝜈Γ(
𝜈

2
)
              (2.4a) 

When 𝜈 is a positive integer it is known as the “number of degrees of freedom” as it has that 

interpretation in the famous “t test” for statistical significance (see §5.2). 

The median and mode are zero. The mean is also zero for 𝜈 > 1 but is otherwise undefined.  

For 𝜈 > 2 the variance is 
𝜈

𝜈−2
 but is divergent/undefined for 𝜈 ≤ 2. Hence the Student’s t-

distribution is non-𝜎 for 𝜈 ≤ 2 and doesn’t have a finite mean either for 𝜈 ≤ 1.  

A special case is 𝜈 = 1 which gives the Cauchy distribution (see §2.5).  

The more important special case is 𝜈 → ∞ for which the Student t pdf tends to the normal 

distribution (with zero mean and unit variance). Hence, the Student t distribution can be 

viewed as a generalisation of the normal distribution for a finite number of degrees of 

freedom.  

The Student t pdf arises as the distribution of the difference between the mean of 𝜈 samples 

of a population and the underlying (whole population) mean, normalised by the sample 

standard deviation, in the case that the underlying (whole population) is normally distributed. 

In standard regression analysis, the Student t distribution is assumed in evaluating the p value 

and therefore takes into account the finite (and possibly small) number of data points being 

fitted. It is also the basis of the famous t-test for statistical significance of the regression 

coefficients (see §5.2).  

2.5 Cauchy PDF 

This is a non-𝜎 pdf. In fact it does not possess a finite mean either.  

   𝑃(𝑥) =
1

𝜋(1+𝑥2)
 𝑃𝑐𝑢𝑚(𝑥) =

1

2
+

1

𝜋
𝑡𝑎𝑛−1(𝑥)            (2.5) 

The median and the mode are both zero. Readers are urged to digest the lesson from this 

simple example pdf: it has neither mean nor variance and yet it is a perfectly sensible pdf. 

Such pdfs are not usually used in practice simply because any finite sample, {𝑥𝑖, 𝑖𝜖[1, 𝑁]}, 

will always have a finite mean and finite variance – and this gives users the false impression 

that non-𝜎 (and perhaps non-mean) pdfs are ruled out. But this is false logic. A larger dataset, 

i.e., for larger 𝑁, might give an ever increasing value for the mean and variance, so that their 

limit as 𝑁 → ∞ does not exist.  

2.6 Poisson Distribution 

The Poisson distribution applies to discrete variables assumed to take positive indefinite 

integer values, 𝑥 ∈ [0, +∞]. Strictly this means that it does not have a pdf, which applies 

only for continuous variables, but instead has a “probability mass function” (pmf), which is 

simply the probability of a given value, 𝑥. The Poisson pmf is, 

     𝑃(𝑥) =
𝑒−�̅��̅�𝑥

𝑥!
               (2.6) 

The variance equals the mean, �̅� (so the standard deviation is √�̅�, noting that this makes sense 

only because we are dealing with pure, dimensionless, numbers). There is no exact 

expression for the median but it is given approximately by, 



A Notebook of Statistical and Probabilistic Formulae, Methods and Derivations 

Page 9 of 34 

 

     𝑥𝑚𝑒𝑑 ≈ �̅� +
1

3
−

1

50�̅�
            (2.6a) 

2.7 Chi-Squared PDF 

The 𝜒2-distribution is defined for positive values of the continuous variable, 𝑥, with pdf, 

     𝑃(𝑥) = 𝐴�̅�𝑥
�̅�

2
−1𝑒−

𝑥

2              (2.7) 

where the normalisation constant is,  

     𝐴�̅� = [2
�̅�

2Γ (
�̅�

2
)]

−1

            (2.7a) 

The variance is twice the mean, 2�̅�. The mode is 𝑚𝑎𝑥(�̅� − 2,0). There is no exact closed-

form solution for the median but an approximate expression is, 

     𝑥𝑚𝑒𝑑 = �̅� (1 −
2

9�̅�
)

3

            (2.7b) 

2.8 Beta Distribution 

The beta distribution is defined for a continuous variable taking values in the interval [0,1]. It 

is defined in terms of two parameters, 𝛼, 𝛽, which may take any positive values. Its pdf is, 

     𝑃(𝑥) = 𝐴𝛼,𝛽𝑥𝛼−1(1 − 𝑥)𝛽−1             (2.8) 

The normalisation constant is a reciprocal beta function, 

𝐴𝛼,𝛽 =
1

𝐵(𝛼,𝛽)
=

Γ(𝛼+𝛽)

Γ(𝛼)Γ(𝛽)
           (2.8a) 

The mean, mode and standard deviation are, 

     �̅� =
𝛼

𝛼+𝛽
             (2.8b) 

     𝜎𝑥 =
1

𝛼+𝛽
√

𝛼𝛽

1+𝛼+𝛽
            (2.8c) 

For 𝛼, 𝛽 > 1    𝑚𝑜𝑑𝑒 =
𝛼−1

𝛼+𝛽−2
            (2.8d) 

There is an exact expression for the median but only in terms of a generalised form of beta 

function. For 𝛼, 𝛽 > 1 an approximate expression is, 

For 𝛼, 𝛽 > 1    𝑥𝑚𝑒𝑑 ≈
𝛼−

1

3

𝛼+𝛽−
2

3

             (2.8e) 

2.9 Binomial Distribution 

The binomial distribution applies for a discrete variable, 𝑟, which takes positive integer 

values in the interval [1, 𝑁]. The probability of a value 𝑟 occurring (i.e., the probability mass 

function, pmf) is, 

     𝑃(𝑟) = (
𝑁
𝑟

) 𝑝𝑟(1 − 𝑝)𝑁−𝑟             (2.9) 
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where (
𝑁
𝑟

) =
𝑁!

𝑟!(𝑁−𝑟)!
 is the binomial coefficient and 0 < 𝑝 < 1 is some parameter. It may be 

interpreted as the probability of 𝑟 events out of 𝑁 independent trials when the probability of 

each event is 𝑝. The mean is �̅� = 𝑁𝑝 and the standard deviation is 𝜎𝑟 = √𝑁𝑝(1 − 𝑝).  

For sufficiently large 𝑁 the binomial distribution may be approximated by a normal 

distribution with the same mean and standard deviation. As the normal distribution extends to 

minus infinity but the binomial distribution stops at zero, this approximation is only 

appropriate if the estimated probability at zero is very small.  

2.10 Power Law Distribution 

A power law distribution has a pdf given by, 

     𝑃(𝑥) = 𝐴𝑥𝑘 for 𝑥 ≥ 0         (2.10a) 

However, this is a bad pdf to be used over the whole range 𝑥 ∈ [0, ∞] because it is not 

normalisable, i.e., the integral (1.1) diverges at infinity if 𝑘 > −1 and alternatively diverges 

at zero if 𝑘 < −1 (and for 𝑘 = −1 it diverges at both). Consequently, a power law pdf makes 

sense only for restricted ranges, namely, for some finite 𝑋, 

For 𝑘 > −1, 𝑥 ∈ [0, 𝑋]         (2.10b) 

For 𝑘 < −1, 𝑥 ∈ [𝑋, ∞]         (2.10c) 

2.11 Exponential (or Boltzmann) Distribution 

This is a special case of the Weibull distribution (§2.3) with 𝑘 = 1. Its pdf is thus 
1

�̅�
𝑒−

𝑥

�̅� where 

0 ≤ 𝑥 < ∞. 

2.12 Gamma Distribution 

The gamma distribution is defined for 𝑥 > 0. Its pdf is, 

    𝑃(𝑥) = 𝐴𝛼𝛽𝑥𝛼−1𝑒𝑥𝑝{−𝛽𝑥}           (2.11a) 

for real positive parameters 𝛼, 𝛽 where the normalising constant is, 

    𝐴𝛼𝛽 =
𝛽𝛼

Γ(𝛼)
            (2.11b) 

and Γ is the gamma function. Its mean is 
𝛼

𝛽
, variance 

𝛼

𝛽2. The mode is zero for 𝛼 < 1 

otherwise the mode is 
𝛼−1

𝛽
.  

2.14 Lévy distribution 

The Lévy distribution, like the Cauchy distribution, is non-𝜎, both the mean and the variance 

being undefined (divergent). Its pdf is defined for 𝑥 ≥ 0 by, 

    𝑃(𝑥) = √
𝑐

2𝜋
∙

1

(𝑥−𝜇)
3
2

𝑒𝑥𝑝 {−
𝑐

2(𝑥−𝜇)
}           (2.12) 

2.15 Bilinear Distribution 

This is a pdf of my own invention, and so is not available in any proprietary software. It has 

the property of being precisely zero at and below 𝑥 = 0 and also precisely zero above a 
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certain maximum 𝑥 (i.e., it has no tail). The pdf is triangular, as shown in Figure 1. 

Algebraically, 

 𝑃(𝑥) =
2

𝑎𝑏
𝑥 for 0 ≤ 𝑥 ≤ 𝑎, or 𝑃(𝑥) =

2

(𝑏−𝑎)𝑏
(𝑏 − 𝑥) for 𝑎 ≤ 𝑥 ≤ 𝑏       (2.13a) 

 �̅� =
𝑎+𝑏

3
 𝜎𝑥

2 =
1

18
(𝑎2 + 𝑏2 − 𝑎𝑏)           (2.13b) 

Figure 1: The Bilinear Distribution 

 

 

 

 

 

 

 

 

2.16 Availability of the PDFs within Standard Platforms 

As of April 2024, Excel / Visual Basic (VB) includes all the above standard distributions 

except my bilinear distribution, the improper power law distribution and the Lévy 

distribution. The Cauchy distribution is a special case of the Student-t distribution. VB also 

includes the F distribution and the hypergeometric distribution. However I leave you to 

determined, for each distribution, whether the pdf is available or only the cumulative 

distribution (often both). Also the inverse cumulative distribution 𝑃𝑐𝑢𝑚
−1  is not available for all 

these pdfs, which makes random sampling harder work (see §3). 

I expect you can find most if not all the above pdfs within Python or its ancillary facilities, 

e.g., Numpy Random, plus a number of others (e.g., Pareto, Zipf and Logistic distributions).  

3. How to Sample a PDF  

You will often wish to write code which randomly samples a given pdf. I explain here how 

this may be done, assuming you have available a facility to assign to a variable 𝑝 a random 

number from a flat (uniform) distribution in the interval [0,1), that is 0 ≤ 𝑝 < 1. In Visual 

Basic this may be provided by 𝑝 = RND().  

WARNING: All random number generators are really only pseudo-random. Some are better 

than others. Visual Basic’s RND() is not a very good one, though it will be adequate for many 

purposes. You may need to research better random number generators, which are certainly 

available in (for example) Python.  

Suppose, according to the desired pdf, the probability of the distributed quantity (which we 

shall call 𝑥) taking a value less than or equal to 𝑋 is 𝑝. Then  𝑃𝑐𝑢𝑚(𝑋) = 𝑝, by definition of 

the cumulative distribution. It follows that 𝑋 = 𝑃𝑐𝑢𝑚
−1 (𝑝). This provides the desired random 

sample, 𝑋, of the pdf in terms of the inverse cumulative function, 𝑃𝑐𝑢𝑚
−1 , and a random sample 

of a flat distribution to give 𝑝.  

Three situations then arise, 

PDF 

 x 𝑎 𝑏 

2/b 
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(i) If the inverse cumulative function, 𝑃𝑐𝑢𝑚
−1 , is known as an analytic expression, then this 

can be used. However, this is unusual (e.g., there is no such analytic expression for the 

normal pdf); 

(ii) However, the inverse cumulative function, 𝑃𝑐𝑢𝑚
−1 , may be provided numerically by the 

software platform you are using. For example, Visual Basic (usually used via Excel) 

includes 𝑃𝑐𝑢𝑚
−1  for the normal distribution (NORM.S.INV), the lognormal distribution 

(LOGNORM.INV), the Beta distribution (BETA.INV), the Binomial distribution 

(BINOM.INV), the Chi-Squared distribution (CHISQ.INV), the F-distribution (F.INV), 

the Gamma distribution (GAMMA.INV) and the Student-t distribution (T.INV). I 

suspect no inverse cumulative function is provided in Visual Basic for the Weibull or 

Hypergeometric functions.  

(iii) Finally, if the inverse cumulative function, 𝑃𝑐𝑢𝑚
−1 , is not available in either of the above 

forms then it is necessary to code it numerically yourself. Two situations arise, 

depending upon whether the cumulative distribution itself, 𝑃𝑐𝑢𝑚, is available or not. If it 

is available, for example as an Excel worksheet function CumulativeDistribution, then 

possible coding in Visual Basic is as follows, 

Dim Pcum(1400), zarray(1400) 

Call StoreCumDist(zarray, Pcum) 'Needs to be run only once 

x_sample = Sample(zarray, Pcum) 'Can be called repeatedly, whenever needed 

(snip, other main code) 

Sub StoreCumDist(zarray, Pcum) 

'Returns an array of the cumulative probability at equal z spacings (z in units of  

standard deviations) 

zmin = -7 

delz = 0.01 

z = zmin 

i = 0 

While z < 7 

Pcum(i) = Application.WorksheetFunction. CumulativeDistribution (z) 

zarray(i) = z 

z = z + delz 

i = i + 1 

Wend 

End Sub 

Function Sample(zarray, Pcum) 

'Returns a random sample of the distribution 

x = Rnd() 'you may want to use a better random number generator than RND 

'Find which Pcum entry is closest to x, 

i = 0 

Prob = Pcum(i) 

While Prob < x 

i = i + 1 

Prob = Pcum(i) 

Wend 

i1 = i - 1 

Prob1 = Pcum(i1) 

ic = i 
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If Abs(Prob - x) > Abs(x - Prob1) Then ic = i1 

Sample = zarray(ic) 

End Function 

This code avoids having to evaluate the cumulative distribution repeatedly, in seeking its 

inverse, every time a sample is required. Instead 1400 values of the cumulative distribution 

are stored. This is likely to be more efficient if more than 1400 samples are called in the main 

code – and this will usually be the case in Monte Carlo simulations.   

If only the pdf is available, not the cumulative distribution, then the Worksheet Function 

“CumulativeDistribution” must be replaced by a coded routine to evaluate the cumulative 

distribution (at 1400 points).  

4. Monte Carlo Simulation (with Deterministic Model) 

Monte Carlo simulation is an umbrella term for any code which simulates a system by 

random sampling. In this section we shall consider one particular class of Monte Carlo 

simulations which are common in engineering. For these it will be assumed that given the 

values of some set of independent variables the value(s) of the desired dependent variable(s) 

can be found by some deterministic procedure. The independent variables will, in general, be 

subject to uncertainty but it is assumed that pdfs for each independent variable can be 

estimated. The dependent, or outcome, variable(s) cannot then be determined with certainty 

but only their probability distributions determined. Monte Carlo simulation aims to estimate 

these outcome probabilities.  

In engineering applications, for example, the dependent variable may be a binary outcome: 

failure or avoidance of failure (where “failure” may mean gross structural failure or the 

occurrence of cracking or some other criterion). In this case, Monte Carlo simulation 

provides an estimate of the probability of failure. 

There are many different Monte Carlo methodologies and it is not the intention here to 

attempt any summary of them. My advice is to deploy only methodologies which are based 

upon equally likely random samples of each of the independent variables. In this case, if 

𝑁𝑡𝑟𝑖𝑎𝑙𝑠 such samples are analysed and 𝑁𝑓𝑎𝑖𝑙𝑠 of these result in failure, then the estimate of 

failure probability is simply 𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 𝑁𝑓𝑎𝑖𝑙𝑠/𝑁𝑡𝑟𝑖𝑎𝑙𝑠. If this simple approach is used it will 

be immediately clear that extremely small failure probabilities, e.g., 10−6, will require a 

correspondingly large number of trials to be simulated. As a rule-of-thumb, 𝑁𝑡𝑟𝑖𝑎𝑙𝑠 will need 

to be at least 10/𝑃𝑓𝑎𝑖𝑙𝑢𝑟𝑒.  

To find equally likely samples, the pdf of each independent variable is divided into 𝑁𝑏𝑖𝑛𝑠 

“bins”, or ranges of the variable. These bins are then assigned a specific value of the variable 

corresponding to the centroid of the pdf over that bin. The process is illustrated for the 

normal distribution and the bilinear distribution below. 

4.1 Equal Probability Bins for the Normal Distribution 

The algorithm is formulated here in terms of a dimensionless, normalised error parameter, 𝑧. 

This is the error in the physical parameter (e.g., temperature, yield stress, etc.) divided by its 

standard deviation. Hence 𝑧 is the number of standard deviations by which the quantity 

deviates from its mean (greater than the mean when 𝑧 is positive, less than the mean when 𝑧 
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is negative). Hence the relevant normal probability density function (pdf) becomes the 

standard normal distribution (i.e., with zero mean and unit variance), 

    𝑃(𝑧) =
1

√2𝜋
𝑒𝑥𝑝 {−

𝑧2

2
}    (4.1) 

The cumulative probability is defined by (1.2).  

The algorithm addresses 𝑁𝑣 distributed variables, 𝑥𝑖, where 𝑖 ∈ [1, 𝑁𝑣] . Each parameter 

takes one of 𝑁𝑏𝑖𝑛𝑠 possible values, each of which is defined by the mean of the parameter and 

the value taken by its error variable, 𝑧𝑖, for the particular random sample in question. Thus, 

    𝑥 = ⟨𝑥⟩ + 〈𝑧〉 ∗ 𝜎     (4.2) 

where ⟨𝑥⟩ is the mean of 𝑥, 𝜎 is the standard deviation of 𝑥, and 〈𝑧〉 is one of the 𝑁𝑏𝑖𝑛𝑠 

possible values of the dimensionless error parameter, 𝑧. This notation refers to the fact that 

〈𝑧〉 is the mean, or centroidal, value for one of the 𝑁𝑏𝑖𝑛𝑠 ‘bins’ into which the pdf has been 

divided. The bin ranges are as follows, 

    Jth Bin:  𝑧 ∈ [𝜉𝐽−1, 𝜉𝐽]     (4.3) 

Capital subscripts such as 𝐽 will be used to denote bin numbers. The bins 𝑧 ∈ [𝜉𝐽−1, 𝜉𝐽] are 

defined so as to represent equal probabilities. Since there are 𝑁𝑏𝑖𝑛𝑠 bins this probability must 

be 1/𝑁𝑏𝑖𝑛𝑠. This means that, 

    𝑃𝑐𝑢𝑚(𝜉𝐽) − 𝑃𝑐𝑢𝑚(𝜉−1) = 1/𝑁𝑏𝑖𝑛𝑠   (4.4) 

The left-most boundary is chosen to be 𝜉0 = −∞ so that 𝑃𝑐𝑢𝑚(𝜉0) = 0, and hence (4.4) 

implies that 𝑃𝑐𝑢𝑚(𝜉𝐽) = 𝐽/𝑁𝑏𝑖𝑛𝑠 which allows all the bins to be found from, 

1 ≤ 𝐽 ≤ 𝑁𝑏   𝜉𝐽 = 𝑃𝑐𝑢𝑚
−1 (

𝐽

𝑁𝑏𝑖𝑛𝑠
)     (4.5) 

From this it follows that 𝜉𝑁𝑏𝑖𝑛𝑠
= +∞, so the entire parameter space from −∞ to +∞ is 

spanned by unequal sized bins with equal probabilities.  

For each bin, the representative value of 𝑧, i.e., 〈𝑧〉, must be determined. This is taken to be 

the mean value of 𝑧 within the bin, i.e., 

Bin I:    ⟨𝑧𝐽⟩ =
∫ 𝑧𝑃(𝑧)𝑑𝑧

𝜉𝐽
𝜉𝐽−1

∫ 𝑃(𝑧)𝑑𝑧
𝜉𝐽

𝜉𝐽−1

     (4.6) 

The denominator is just equal to (4.4), whereas the numerator can be evaluated explicitly for 

a normal distribution, (8.1), to give, 

    ⟨𝑧𝐽⟩ =
𝑁𝑏𝑖𝑛𝑠

√2𝜋
(𝑒𝑥𝑝 {−

𝜉𝐽−1
2

2
} − 𝑒𝑥𝑝 {−

𝜉𝐽
2

2
})  (4.7) 

Note that the use of (4.7) is particularly important for the first and last bins since it assigns a 

finite mean 〈𝑧〉 to a bin of theoretically infinite width. The values of 〈𝑧〉 for the first and last 

bins define the extremes of the sampling, i.e., the minimum and maximum values. Explicitly, 

〈𝑧〉𝑚𝑖𝑛/𝑚𝑎𝑥 = ∓
𝑁𝑏𝑖𝑛𝑠

√2𝜋
𝑒𝑥𝑝 {−

1

2
(𝑃𝑐𝑢𝑚

−1 (
1

𝑁𝑏𝑖𝑛𝑠
))

2

}  (4.8) 
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Table 2 lists the resulting −〈𝑧〉𝑚𝑖𝑛 = 〈𝑧〉𝑚𝑎𝑥 values for a range of 𝑁𝑏𝑖𝑛𝑠 values. For example, 

if you wish to include samples between minus and plus five standard deviations then you 

need to use just over one million bins. Alternatively, if you wish to include samples between 

minus and plus four standard deviations you would need to use just over 10,000 million bins. 

Thus the extra standard deviation (±5𝜎 cf ±4𝜎) requires one hundred times more bins.  

Table 2: Numbers of Bins and Corresponding Number of Standard Deviations 

Number of Bins Number of Standard 

Deviations 

( this number about the 

mean) 

Probability of being 

outside the simulated 

range per variable* 

10 1.75 0.079 

30 2.23 0.026 

100 2.67 0.0077 

300 3.02 0.0025 

1000 3.37 7.6 x 10-4 

3,000 3.66 2.5 x 10-4 

10,000 3.96 7.5 x 10-5 

30,000 4.21 2.5 x10-5 

100,000 4.48 7.5 x 10-6 

300,000 4.71 2.5 x 10-6 

1,000,000 4.95 7.5 x 10-7 

10,000,000 5.38 7.5 x 10-8 

              *i.e., 1 – the confidence interval 

4.2 Equal Probability Bins for the Bilinear Distribution 

The bilinear distribution is defined in §2.15. By randomly sampling an integer 𝑟 from a flat 

distribution between 1 and 𝑁𝑏𝑖𝑛𝑠 a random sample of the bilinearly distributed variable, 𝑥, is 

provided by setting, 

If 𝑟 ≤
𝑎

𝑏
𝑁𝑏𝑖𝑛𝑠: 𝑥 =

1

2
(√𝑟 + √𝑟 − 1)√

𝑎𝑏

𝑁𝑏𝑖𝑛𝑠
      (4.9a) 

If 𝑟 >
𝑎

𝑏
𝑁𝑏𝑖𝑛𝑠: 𝑥 = 𝑏 −

1

2
(√𝑠 + √𝑠 + 1)√

𝑏(𝑏−𝑎)

𝑁𝑏𝑖𝑛𝑠
  where  𝑠 = 𝑁𝑏𝑖𝑛𝑠 − 𝑟  (4.9b) 

The parameters 𝑎, 𝑏 which define the pdf may be fractional. But even if they are integers, in 

general (4.9ab) will provide a real (fractional) sample for 𝑥. The set of 𝑁𝑏𝑖𝑛𝑠 values for 𝑥 

resulting from (4.9a,b) as 𝑟 takes bin numbers 1 to 𝑁𝑏𝑖𝑛𝑠 are the corresponding characteristic 

values for that bin.  

4.3 Latin Hypercube Sampling 

To avoid sample bias one must ensure that every bin is sampled the same number of times, 

e.g., once each, and this must be the case for all the distributed independent variables. If there 

are 𝑁𝑣 distributed independent variables then there are 𝑁𝑏𝑖𝑛𝑠
𝑁𝑣 ways of picking one bin for 

each variable. In practice it is wildly impracticable to calculate every one of these possible 

permutations. For example, using 𝑁𝑏𝑖𝑛𝑠 = 10,000 with a very modest 5 distributed 

independent variables would need 1020 trials to cover every permutation of bin choices for 
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all the variables. In practice it is common to have 20 or 30 distributed variables, pushing the 

number of trials up to 1080 or 10120. But even 1020 trials is not a practical possibility. Even 

if the deterministic core of the code could run in as little as a nanosecond, 1020 trials would 

require 1011 seconds, or over 3,000 years. 

Instead of aiming to cover every possible permutation we settle for a sampling algorithm 

which ensures that every bin of every variable is sampled exactly once – not in every 

combination (which would require 𝑁𝑏𝑖𝑛𝑠
𝑁𝑣 trials) but in the minimum number of trials for 

which this is possible, namely 𝑁𝑏𝑖𝑛𝑠 trials. This is accomplished using the concept of the 

Latin hypercube. 

Consider an 𝑁𝑣 dimensional cube, each side of which is divided into 𝑁𝑏𝑖𝑛𝑠 divisions. This 

hypercube thus contains 𝑁𝑏𝑖𝑛𝑠
𝑁𝑣 cells, one for each permutation of choice for the 𝑁𝑣 

variables. A Latin hypercube is defined as a choice of 𝑁𝑏𝑖𝑛𝑠 cells out of the possible 𝑁𝑏𝑖𝑛𝑠
𝑁𝑣 

none of which share any row/column/rank/…. etc., covering all 𝑁𝑣 directions. In chess terms, 

this corresponds to placing 𝑁𝑏𝑖𝑛𝑠 queens onto a 𝑁𝑣 dimensional chess board in such a way 

that none are en prise.  

The Latin hypercube algorithm consists of randomly selecting a Latin hypercube and then 

using all 𝑁𝑏𝑖𝑛𝑠 trials which the Latin hypercube represents. This approach ensures that every 

bin of every variable is used in just 𝑁𝑏𝑖𝑛𝑠 trials (albeit in only a very small sub-set, 𝑁𝑏𝑖𝑛𝑠, of 

possible combinations). Note that this means that the number of trials equals the number of 

bins, 𝑁𝑏𝑖𝑛𝑠.  

The value chosen for 𝑁𝑏𝑖𝑛𝑠 determines the greatest number of standard deviations away from 

the mean which is sampled, according to (4.8) and Table 2. It is not possible with the Latin 

hypercube algorithm to sample a large number of standard deviations using only a small 

number of trials – because the number of trials equals the number of bins, and this would 

conflict with the requirement for bins of equal probability.  

Note that the Latin Hypercube methodology constrains the number of bins, 𝑁𝑏𝑖𝑛𝑠 , to be the 

same for all of the 𝑁𝑣 independent variables.   

There is nothing to stop a simulation using two or more Latin hypercubes, say 𝑛 hypercubes, 

so that the total number of trials would then be 𝑛𝑁𝑏𝑖𝑛𝑠. This will produce a better estimate 

than using just a single Latin hypercube. However, there is no point in doing this because it 

would be better – for the same total number of trials and hence computer time – to increase 

the number of bins to 𝑁𝑏𝑖𝑛𝑠
′  where 𝑁𝑏𝑖𝑛𝑠

′ = 𝑛𝑁𝑏𝑖𝑛𝑠 and use a single Latin hypercube with this 

larger number of bins as this would increase the range of 〈𝑧〉 in the simulation and hence be a 

more reliable estimate.  

4.3.1 Specimen Code to Generate a Latin Hypercube (VB) 

Let Nb be the number of bins and Nv the number of distributed variables. Hence, the 

hypercube is of dimension Nv and each of its Nv sides is divided into Nb bins. The array 

LHC(c,v) defines the Latin hypercube. The possible values taken by LHC are the bin 

numbers, [1, Nb]. The first index, c, in LHC(c,v) is a sequential identifier, from 1 to Nb, of 

the occupied cells (which represent the Nb trials). The second index, v, is the variable 

number, from 1 to Nv. Thus, occupied cell No.1 (i.e., trial No.1) puts variable 1 in bin 

LHC(1,1), variable 2 in bin LHC(1,2), variable 3 in bin LHC(1,3), etc. 
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For every variable, v, the Nb numbers LHC(c,v), for c from 1 to Nb, is a permutation of the 

integers from 1 to Nb, i.e., they are all different. Hence, LHC is defined by setting each of its 

Nv columns to a permutation of [1,Nb]. Note that it is acceptable for different variables, v, to 

be assigned the same bin value in a given occupied cell. Different variables might even have 

the same permutation of bin values (i.e., the same bin for every occupied cell). This is an 

unlikely but acceptable occurrence. If all variables have the same permutation then the 

occupied cells of the Latin hypercube are the principal diagonal (regardless of the 

permutation), though this will not happen by chance for sensible numbers of bins.  

It is assumed that there is available a routine “RandomPerm” which will provide a random 

permutation (array “perm”) of the integers 1 to Nb. The following Visual Basic code will 

generate a random Latin hypercube, 

Dim LHC(Nb, Nv), perm(Nb) 

For v = 1 To Nv 

Call RandomPerm(perm, Nb) 

For c = 1 To Nb 

LHC(c, v) = perm(c) 

Next c 

Next v 

If not available within the code platform, “RandomPerm” can be coded in Visual Basic as 

follows, 

Sub RandomPerm(perm, Nb) 

Randomize 

For i = 1 To Nb 

perm(i) = i 

Next i 

For i = 1 To 3 * Nb 

j = Int(1 + Nb * Rnd()) 

10 k = Int(1 + Nb * Rnd()) 

If k = j Then GoTo 10 

keep = perm(j) 

perm(j) = perm(k) 

perm(k) = keep 

Next i 

End Sub 

This coding for “RandomPerm” may not be terribly efficient and you may devise better. 

However, note that the efficiency of the coding for generating the Latin hypercube is quite 

unimportant since it is done only once.  

4.4 Implementing Correlations 

In general one will find that some of the independent variables are correlated. If so, it is 

essential to include this correlation in the simulation. Failure to do so will result in serious 

errors in the outcome probability. This section explains how correlations are implemented. 
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4.4.1 Algorithm for Two Variables 

Suppose you have two distributed variables, 𝑥 and 𝑦. They are assumed to have been put in 

standard form, with zero mean and normalised to unit variance. How can correlation between 

𝑥 and 𝑦 with a given (Pearson) correlation coefficient, 𝐶𝑥𝑦, be implemented?  

The contention is that correlation between the two variables can be imposed by using a third 

variable, 𝜉, also with zero mean and unit variance, then sampling 𝑥 and 𝜉 independently (i.e., 

uncorrelated) and setting 𝑦 to be, 

    𝑦 = 𝐶𝑥𝑦𝑥 + √1 − 𝐶𝑥𝑦
2 ⋅ 𝜉              (4.10) 

Thus, if correlation were perfect (𝐶𝑥𝑦 = 1) then (4.10) would reduce to 𝑦 = 𝑥 as required, 

and perfect inverse correlation (𝐶𝑥𝑦 = −1) would reduce to 𝑦 = −𝑥 as required. Conversely, 

if there were no correlation between 𝑥 and 𝑦 (𝐶𝑥𝑦 → 0) then (4.10) becomes 𝑦 = 𝜉, i.e., a 

random variable completely independent of 𝑥, again as required. The proof that Equ.( 4.10) 

imposes the desired correlation 𝐶𝑥𝑦 between x and y  in the general case is given below.   

Proof of the Two Variable Algorithm  

The pdf of 𝑥 is written 𝑃(𝑥) and the pdf  of 𝜉 is denoted �̃�(𝜉). We must first check that (A.1) 

is consistent with 𝑦 having a mean of zero and a variance of unity. This is proved as 

follows… 

⟨𝑦⟩ =  𝑦𝑃(𝑥)𝑑𝑥 �̃�(𝜉)𝑑𝜉 =  (𝐶𝑥𝑦𝑥 + √1 − 𝐶𝑥𝑦
2 ⋅ 𝜉) 𝑃(𝑥)𝑑𝑥 �̃�(𝜉)𝑑𝜉 

      = [𝐶𝑥𝑦 ∫ 𝑥𝑃(𝑥)𝑑𝑥 + √1 − 𝐶𝑥𝑦
2 ∫ 𝜉�̃�(𝜉)𝑑𝜉] = 0                (4.11a) 

𝜎𝑦
2 =  (𝑦 − ⟨𝑦⟩)2𝑃(𝑥)𝑑𝑥 �̃�(𝜉)𝑑𝜉 =  (𝐶𝑥𝑦𝑥 + √1 − 𝐶𝑥𝑦

2 ⋅ 𝜉)
2

𝑃(𝑥)𝑑𝑥 �̃�(𝜉)𝑑𝜉 

    = [𝐶𝑥𝑦
2 ∫ 𝑥2𝑃(𝑥)𝑑𝑥 + (1 − 𝐶𝑥𝑦

2 ) ∫ 𝜉2�̃�(𝜉)𝑑𝜉 + 2𝐶𝑥𝑦√1 − 𝐶𝑥𝑦
2 ∫ 𝑥𝜉𝑃(𝑥)�̃�(𝜉)𝑑𝑥𝑑𝜉] 

    = [𝐶𝑥𝑦
2 𝜎𝑥

2 + (1 − 𝐶𝑥𝑦
2 )𝜎𝜉

2 + 0] = 1                 (4.11b) 

where we have used ∫ 𝑥𝑃(𝑥)𝑑𝑥 = ∫ 𝜉�̃�(𝜉)𝑑𝜉 = 0 (i.e., zero means), and ∫ 𝑃(𝑥)𝑑𝑥 =

∫ �̃�(𝜉)𝑑𝜉 = 1 (total probability is unity), and ∫ 𝑥2 𝑃(𝑥)𝑑𝑥 = 𝜎𝑥
2 = 1 and ∫ 𝜉2 𝑃(𝜉)𝑑𝜉 =

𝜎𝜉
2 = 1 (unit variance), and ∫ 𝑥𝜉𝑃(𝑥)�̃�(𝜉)𝑑𝑥𝑑𝜉 = 0 (i.e., 𝑥 and 𝜉 are uncorrelated). The 

correlation coefficient between x and y is, 

 ∫
 𝑥𝑦𝑃(𝑥)𝑑𝑥�̃�(𝜉)𝑑𝜉

𝜎𝑥𝜎𝑦
= ∫ 𝑥(𝐶𝑥𝑦𝑥 + √1 − 𝐶𝑥𝑦

2 ⋅ 𝜉)𝑃(𝑥)𝑑𝑥�̃�(𝜉)𝑑𝜉 

= 𝐶𝑥𝑦
 𝑥2𝑃(𝑥)𝑑𝑥�̃�(𝜉)𝑑𝜉 = 𝐶𝑥𝑦                  (4.11c) 

as required. Note that this proof applies for any probability density functions, 𝑃(𝑥) and �̃�(𝜉), 

provided only that the standard deviation exists, i.e., any “with-” pdfs (see §6). However the 

nature of the pdf’s assumed for 𝑥 and 𝜉 will impose a particular pdf on 𝑦. If 𝑃(𝑥) and �̃�(𝜉) 

are both normal distributions then 𝑦 will also be normally distributed. Consult specialist texts 

for the implications of this method of imposing correlation with non-normal distributions.  
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4.4.2 Algorithm for Multiple Variables 

More generally you may have a number of variables, 𝑥, 𝑦, 𝑧, 𝑤. .., which are all mutually 

correlated. How is this multivariable correlation imposed in a Monte Carlo simulation? The 

imposition of multivariable correlation requires Cholesky decomposition of the correlation 

matrix. Coding Cholesky decomposition ‘from scratch’ is roughly as difficult as matrix 

inversion, so is feasible but not recommended. Users wishing to impose multivariable 

correlations may opt to use proprietary software which have such facilities in-built. 

Alternatively, using the more mathematical software platforms, such as Matlab or Python, 

which include Cholesky decomposition facilities, may provide the best of both worlds in 

terms of flexibility and ease of use.   

If there are 𝑁 variables which are all correlated, the pair-wise correlation coefficients can be 

arranged in a matrix called the “correlation matrix”, (𝐶). The element 𝐶𝑖𝑗 of this matrix is the 

correlation coefficient between the ith and the jth variables. Hence, the diagonal elements of 

(𝐶) are all unity and the matrix is real and symmetric. A restricted form of the Cholesky 

decomposition theorem states that any Hermitian, positive-definite matrix, 𝐻, can be written 

in a unique way as the absolute matrix square of a lower triangular matrix with real, positive 

diagonal elements, i.e., 𝐻 = 𝐿𝐿+ where + denotes the complex conjugate transpose in the 

general case. Real symmetric matrices are a special case of Hermitian positive-definite 

matrices, and hence any correlation matrix can be written in the form 𝐿𝐿𝑇 where  𝑇 denotes 

the transpose and 𝐿 has zeros above the main diagonal. A 3 × 3 example illustrates this, 

(𝐶) = (
1 0.5 0.3

0.5 1 0.7
0.3 0.7 1

) = 𝐿𝐿𝑇 where,  𝐿 = (
1 0 0

0.5 0.866 0
0.3 0.635 0.712

)            (4.12a) 

Again we assume that all variables have been put in standard form, with zero means and unit 

variances. The variables which are to be correlated are 𝑥, 𝑦, 𝑧, . ... To impose this correlation, 

start with uncorrelated variables 𝜉1, 𝜉2, 𝜉3, . . . 𝜉𝑁, also in standard form. If 𝐿 is the Cholesky 

“square root” of the correlation matrix, i.e., (𝐶) = 𝐿𝐿𝑇, then the desired correlated variables 

are obtained from the independently randomly sampled 𝜉1, 𝜉2, 𝜉3, . . . 𝜉𝑁, written as a column 

vector 𝜉, as follows, 

    (

𝑥
𝑦
𝑧

𝑒𝑡𝑐

) = 𝐿�̄�                (4.12b) 

The two-variable method of §4.4.1 is just (4.12b) in the case of a 2 × 2 correlation matrix 

because in that case we have, 

 (𝐶) = (
1 𝐶𝑥𝑦

𝐶𝑥𝑦 1
) = 𝐿𝐿𝑇 where,  𝐿 = (

1 0

𝐶𝑥𝑦 √1 − 𝐶𝑥𝑦
2 )            (4.12c) 

so that (4.12b) gives 𝑥 = 𝜉1 and 𝑦 = 𝐶𝑥𝑦𝜉1 + √1 − 𝐶𝑥𝑦
2 ⋅ 𝜉2, in agreement with (4.10). For 

the above 3 × 3 example, (4.12a), we get, 

    𝑥 = 𝜉1 

    𝑦 = 0.5𝜉1 + 0.866𝜉2               (4.12d) 

    𝑧 = 0.3𝜉1 + 0.635𝜉2 + 0.712𝜉3 
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The general case is now clear and very simple to implement providing that the Cholesky 

decomposition can be carried out. Note that to use this method in practice the variables 

𝑥, 𝑦, 𝑧. . .. resulting from (4.12b) will be in standard form and must be converted to the desired 

physical variables by multiplying by the standard deviation and adding the mean. For this 

reason the method can only be used for “with-” pdfs. Another practical issue is that the User 

must specify a correlation matrix,(𝐶), which is mathematically possible, a significant 

constraint on the possibilities for (C). Provided that (C) is real symmetric and positive 

definite, the above construction guarantees that it is a valid correlation matrix, because 𝐿 

exists. Consequently, the test of a real symmetric matrix being a valid correlation matrix is 

that it is also positive definite. This is equivalent to all its eigenvalues being positive. The 

User should therefore test that this is the case before proceeding with the analysis 

5. Multivariate Regression 

Regression is essentially least-sum-of-squares fitting of a model. Suppose a quantity 𝑦 is 

hypothesised to depend upon some set of 𝑚 independent variables, �̅� = {𝑥𝑗 , 𝑗 ∈ [1, 𝑚]}. A 

specific model for this dependence is hypothesised in which 𝑦 is expressed as a sum over 𝑛 

specified functions of �̅�, each function being factored by an unknown coefficient, 𝐴𝑖 where 

the index 𝑖 takes values from 1 to 𝑛. Hence, 

𝑦 ≈ 𝐹(�̅�) = ∑ 𝐴𝑖𝑓𝑖(�̅�)𝑛
𝑖=1     (5.1) 

Hence, 𝑦 is assumed to be linearly related to the 𝑛 unknown coefficients, 𝐴𝑖, but its 

dependence on the 𝑚 independent variables, �̅�, can be as non-linear and as complicated as 

you wish. An example of a possible model is thus, 

𝐹(�̅�) = 𝐴1𝑐𝑜𝑠(𝑥1 + 𝑥2)𝑒2𝑥2 + 𝐴2𝑥1
3𝑙𝑜𝑔𝑥2 

In contrast, if the parameter 𝐴3 is to be found by optimising, then the following model is not 

suitable for regression, 

𝐹(�̅�) = 𝐴1𝑐𝑜𝑠(𝑥1 + 𝑥2)𝑒𝐴3𝑥2 + 𝐴2𝑥1
3𝑙𝑜𝑔𝑥2 

because the dependence on 𝐴3 is not linear.  

The model is to be fitted (regressed against) 𝑁 data points comprising pairs of measured data 

for 𝑦𝑘 corresponding to given �̅�𝑘, noting that the latter is 𝑚 numbers for each 𝑘. The best fit 

is usually defined by minimising 𝜒2 where,  

𝜒2 =
1

𝑁−𝑛
∑ (𝑦𝑘 − 𝐹(�̅�𝑘))

2𝑁
𝑘=1    (5.2) 

(5.2) is (almost) the average over all data points of the squared difference between the model 

prediction of 𝑦 and the measured 𝑦𝑘 (called the residuals). Hence 𝜒2 is also (almost) the 

variance of the residuals. “Almost” refers to the use of a denominator of 𝑁 − 𝑛 rather than 

just 𝑁, where 𝑛 is the number of coefficients to be found. (The difference 𝑁 − 𝑛 is known as 

the “degrees of freedom”).  

 “Minimising” here means the smallest 𝜒2 that can be achieved by varying the 𝑛 unknown 

coefficients, 𝐴𝑖. Hence, setting the partial derivatives of 𝜒2 wrt 𝐴𝑖 to zero gives, 

𝜕𝜒2

𝜕𝐴𝑖
= −

2

𝑁
∑ (𝑦𝑘 − 𝐹(�̅�𝑘))

𝜕𝐹(�̅�𝑘)

𝜕𝐴𝑖
= −

2

𝑁
∑ (𝑦𝑘 − 𝐹(�̅�𝑘))𝑓𝑖(�̅�𝑘) = 0𝑁

𝑘=1
𝑁
𝑘=1   (5.3) 
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Substituting (5.1) gives a matrix equation for the unknown coefficients, expressed as a 

column matrix, �̅�, 

    (𝑀)�̅� = ℎ̅      (5.4a) 

or,    ∑ 𝑀𝑖𝑗𝐴𝑗 = ℎ𝑖
𝑛
𝑗=1      (5.4b) 

where,  ℎ𝑖 = ∑ 𝑓𝑖(�̅�𝑘)𝑦𝑘
𝑁
𝑘=1  and 𝑀𝑖𝑗 = ∑ 𝑓𝑖(�̅�𝑘)𝑓𝑗(�̅�𝑘)𝑁

𝑘=1   (5.4c) 

Hence the square matrix (𝑀) and the column matrix ℎ̅ are both known in terms of the model 

and the data, and hence (5.4a) is solved for the unknown coefficients by inverting (𝑀), 

�̅� = (𝑀)−1ℎ̅      (5.5) 

5.1 Calculating the Standard Error of the Regression Coefficients 

Generally you would use a statistical package to perform the regression, and so can take it on 

trust that the standard error in the resulting coefficients is correctly calculated. However, you 

should be aware of how this is done. Here I give only the result not the proof. The standard 

error in the regression coefficient 𝐴𝑖 is the square-root of 𝜒2 times the 𝑖𝑡ℎ diagonal element in 

the matrix (𝑀)−1, i.e., 

Error in 𝐴𝑖 = √𝜒2((𝑀)−1)𝑖𝑖    (5.6) 

The requirement for matrix inversion makes this messy to do by hand when there are more 

than two regression coefficients. In the special case of linear regression against a single 

independent variable, i.e., when the model is 𝑦 ≈ 𝐹(𝑥) ≡ 𝐴1 + 𝐴2𝑥, the errors become, 

Error in 𝐴2 = √
1

𝑁−𝑛

∑ (𝑦𝑖−𝐹(𝑥𝑖))
2𝑁

𝑖=1

∑ (𝑥𝑖−〈𝑥〉)2𝑁
𝑖=1

   (5.7a) 

Error in 𝐴1 =√∑ 𝑥𝑖
2𝑁

𝑖=1  times the error in 𝐴2  (5.7b) 

5.2 Significance of Regression Coefficients 

Whilst (5.5) will provide the best-fit coefficients in (almost) all circumstances, this does not 

mean that the apparent dependence of 𝑦 on (say) variable 𝑥1 is statistically significant. 

Standard regression software will provide 𝑝 values for each fitted coefficient, 𝐴𝑖. The 𝑝 value 

is (roughly) the probability of the fitted value of 𝐴𝑖 having arisen merely by chance. Custom 

and practice sets the definition of statistical significance at a 𝑝 value of 5%. Hence the 

relationship between 𝑦 and 𝑥𝑖 implied by the fitted value of 𝐴𝑖 is taken as statistically 

significant if 𝑝 < 0.05. More generally, the coefficient is said to be “significant at the 95% 

level” if 𝑝 < 0.05. Alternatively, the coefficient is said to be “significant at the 99.9% level” if             

𝑝 < 0.001.   

The 𝑝 value is derived by entering the two-tailed t-distribution (see §2.4) at a t statistic equal 

to the best estimate coefficient divided by its standard error, the latter being given by (5.5) 

and (5.6) respectively, and for a number of degrees of freedom set to 𝑁 − 𝑛. There are many 

𝑝 value calculators based on the t-test available online, e.g., T Score to P Value Calculator - 

Statology.  

https://www.statology.org/t-score-p-value-calculator/
https://www.statology.org/t-score-p-value-calculator/
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5.3 Relationship Between a Linear Regression Coefficient and the Pearson Correlation 

For linear regression against a model, 𝑦 = 𝐴1 + 𝐴2𝑥, (5.5) gives, 

    𝐴2 =
𝐶𝑜𝑣(𝑥,𝑦)

𝜎𝑥
2                 (5.8) 

But the Pearson correlation coefficient is  𝐶𝑥𝑦 =
𝐶𝑜𝑣(𝑥,𝑦)

𝜎𝑥𝜎𝑦
 and so we have, 

    𝐶𝑥𝑦 =
𝜎𝑥

𝜎𝑦
𝐴2                (5.9) 

Note that this relationship between the Pearson correlation coefficient and a regression 

coefficient only applies when the latter is the coefficient of the linear term in a linear model. 

This reinforces the point made above that the Pearson correlation is specific to linear 

relationship.  

6. Effect Size: Cohen’s “d”  

Consider two groups distinguished in some way by some parameter (the predictor variable). 

For example, two sets of patients distinguished by their receiving different treatments. Or, for 

my BPM Cymru charity data, two sets of non-resident fathers distinguished by having low or 

high domestic abuse scores (or low or high income, etc.).  

Some outcome measure is performed on all subjects, e.g., whether they survive, or their 

Warwick-Edinburgh mental well-being score, etc. We wish to determine if the difference in 

the predictor variable between the two groups results in a small or large “effect”, i.e., a small 

or large change in the outcome measure.  

Let 𝑛1 be the number of people in the first group, let 〈𝑥1〉 be the mean of the measured 

outcome measures for group 1, and let 𝑠1
2 be the variance of this set of outcome measures. 

Ditto for group 2. Cohen’s d is defined as, 

𝑑 =
〈𝑥1〉−〈𝑥2〉

𝑠
     (6.1) 

where,     𝑠 = √
(𝑛1−1)𝑠1

2+(𝑛2−1)𝑠2
2

𝑛1+𝑛2
   (6.2) 

The usual interpretation of Cohen’s d is that, 

d = 0.2 indicates a small effect 

d = 0.5 indicates a medium sized effect 

d ≥ 0.8 indicates a large effect. 

7. Significance of the Effect: Independent Samples t-Test 

Whilst Cohen’s d measures the size of an effect (normalised by the joint variance), the 

Independent Samples t-Test provides a ‘p’ value for the effect, i.e., it provides the probability 

for the null hypothesis that there is, in reality, no effect produced by the change in the 

predictor variable and the apparent effect is just statistical random chance.  

This p is derived from the Student t-distribution by entering it at a certain t statistic. (There 

are many online facilities to calculate p for a given t, e.g., https://www.statology.org/t-score-

https://www.statology.org/t-score-p-value-calculator/
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p-value-calculator/). Using the same notation as for Cohen’s d, the required t statistic is 

defined by, 

𝑡 =
〈𝑥1〉−〈𝑥2〉

√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

     (7.1) 

8. Cronbach’s Alpha 

Cronbach’s Alpha is often said to be a test of the validity of a proposed measure of a single 

factor “construct”, such as mental well-being. Strictly it is only a test of internal consistency, 

which is one component of validity. (A full demonstration of validity also requires 

examination of the claim that the proposed measurement procedure does indeed measure 

what it is purported to measure).   

Cronbach’s Alpha is limited to constructs consisting of a single factor (so it could not be 

applied to “personality”, since personality is a multi-factorial construct). Whether domestic 

abuse has been shown to be a single construct I don’t know, but it seems unlikely as even 

coercive control is likely to be multifactorial (I’m guessing). 

Envisage a measure which consists of asking 𝑘 questions in a standard survey questionnaire 

(e.g., the 24 questions of the DV RIC). Suppose you collect this data from 𝑁 subjects. Call 

the response to the 𝐼𝑡ℎ question by the 𝑗𝑡ℎ subject 𝑋𝑗𝐼 where 𝐼 ∈ [1, 𝑘], 𝑗 ∈ [1, 𝑁]. 𝑋𝑗𝐼 is 

assumed to be a numerical measure. It may be binary (0 or 1 only) or take a range of 

numerical values.  

Define 𝜎𝐼𝐽 as the covariance between question 𝐼 and question 𝐽 evaluated over all the 

subjects, i.e., 

𝜎𝐼𝐽 =
1

𝑁−1
∑ (𝑋𝑚𝐼 − 〈𝑋𝐼〉)(𝑋𝑚𝐽 − 〈𝑋𝐼〉)𝑁

𝑚=1    (8.1) 

where the mean response to question 𝐼 is 〈𝑋𝐼〉 =
1

𝑁
∑ 𝑋𝑚𝐼

𝑁
𝑚=1 . The variance of the different 

subjects’ answers to question 𝐼 is thus,  

𝜎𝐼𝐼 =
1

𝑁−1
∑ (𝑋𝑚𝐼 − 〈𝑋𝐼〉)2𝑁

𝑚=1     (8.2) 

We denote by 𝜎𝐼𝐽̅̅ ̅̅  the mean of the covariances (i.e., the mean of the off-diagonal elements of 

the covariance matrix alone, not including the variances), i.e.,   

𝜎𝐼𝐽̅̅ ̅̅ =
1

𝑘(𝑘−1)
∑ ∑ 𝜎𝐼𝐽

𝑘
𝐽≠𝐼

𝑘
𝐼=1      (8.3) 

Similarly, the mean variance is, 

𝜎𝐼𝐼̅̅̅̅ =
1

𝑘
∑ 𝜎𝐼𝐼

𝑘
𝐼=1       (8.4) 

Those statistics relate to the responses to individual questions and their distributions amongst 

the different subjects. However, the set of 𝑘 questions is intended to be a measure of a single 

construct-factor. This single score for the whole measure (i.e., a single score for each subject) 

is taken to be the sum of the responses to the individual questions. Thus we define the 

proposed factor-measure for subject 𝑗 to be, 

𝑌𝑗 = ∑ 𝑋𝑗𝐼
𝑘
𝐼=1        (8.5) 

https://www.statology.org/t-score-p-value-calculator/
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The variance of this total measure across the subjects is thus, 

𝑠𝑌 =
1

𝑁−1
∑ (𝑌𝑗 − 〈𝑌〉)

2𝑁
𝑗=1      (8.6) 

where the mean of the 𝑌𝑗 is 〈𝑌〉 =
1

𝑁
∑ 𝑌𝑗

𝑁
𝑗=1 . An exercise is to show that 𝑠𝑌 can be written,  

𝑠𝑌 = ∑ ∑ 𝜎𝐼𝐽
𝑘
𝐽=1

𝑘
𝐼=1 ≡ ∑ 𝜎𝐼𝐼

𝑘
𝐼=1 + ∑ ∑ 𝜎𝐼𝐽

𝑘
𝐽≠𝐼

𝑘
𝐼=1   (8.7) 

We may also write this as, 

𝑠𝑌 = 𝑘𝜎𝐼𝐼̅̅̅̅ + 𝑘(𝑘 − 1)𝜎𝐼𝐽̅̅ ̅̅      (8.8) 

The so-called “systematic” formula for the non-tau-equivalent 𝜌𝑇, which I take here to be 

equivalent to – or a good enough approximation to – Cronbach’s alpha, is, 

𝛼 ≈ 𝜌𝑇 =
𝑘2𝜎𝐼𝐽̅̅ ̅̅̅

𝑠𝑌
      (8.9) 

Using the above expression for 𝑠𝑌 we get, finally, 

𝛼 ≈ [1 −
1

𝑘
+

𝜎𝐼𝐼̅̅ ̅̅

𝑘𝜎𝐼𝐽̅̅ ̅̅̅
]

−1

      (8.10) 

where (8.1-4) are used to evaluate (8.10). A value of 𝛼 greater than 0.9 indicates excellent 

internal consistency (validity), whilst a value between 0.8 and 0.9 is considered good, and a 

value between 0.7 and 0.8 is generally regarded as adequate. Values less than 0.7 suggest the 

validity or internal consistency are questionable or unsubstantiated by the data analysed.  

9. Principal Component Analysis (PCA) 

9.1 Introduction to Principal Component Analysis (PCA) and Factor Analysis (FA) 

Principal Component Analysis (PCA) and Factor Analysis (FA) are closely related ways of 

extracting the key features from a set of data. One considers a set of 𝑝 distributed variables, 

each of which are been observed (or measured) 𝑛 times. The archetypal situation envisaged in 

psychology applications is the analysis of the results of a survey. The survey consists of 𝑝 

questions and 𝑛 different people have completed the survey. The questions are assumed to 

have numerical answers, which might be binary (so that yes/no becomes 0 or 1), or a Likert 

scale (e.g., a positive integer, 1, 2,… to some maximum like 5 or 7 or 24), or a continuous 

real variable. Only real data is considered here but the following analysis could easily be 

generalised to complex data. 

Hence, the data to be analysed is given by a rectangular matrix, denoted (𝑥), whose 

component 𝑥𝑖𝑚 where 𝑖 ∈ [1, 𝑝] and 𝑚 ∈ [1, 𝑛] is the answer given to question 𝑖 by the 𝑚𝑡ℎ 

person.  

9.2 PCA: The Model 

We start by replacing the raw data, i.e., the matrix (𝑥), with a standardised form in which the 

new matrix (𝑧) has the average answer to each question subtracted. Hence we define,  

𝑧𝑖𝑚 = 𝑥𝑖𝑚 − 〈𝑥𝑖〉 where,    〈𝑥𝑖〉 =
1

𝑛
∑ 𝑥𝑖𝑚

𝑛
𝑚=1    (9.1) 

In common with most statistical techniques, the limitation of PCA (and FA) is that they are 

based on the assumption of an underlying linear model. In the case of PCA the model is, 
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(𝑧) = (𝐿)(𝐹) + (𝑒)    (9.2) 

Where (𝑒) is an error matrix and (𝐿)(𝐹) is the best fit for a model of this form where both 

(𝐿) and (𝐹) are rectangular matrices. In components, and displaying the shapes of the 

matrices (but omitting (𝑒)) the model looks like this, 

 

          = 

 

 

The labels on the sides indicate the dimensions, and the schematic illustrates the expected 

relative size of these dimensions, namely 𝑛 > 𝑝 > 𝑘. 

We will also consider the matrix (𝐿) to consist of 𝑘 column “vectors”, denoted �̅�𝑞 where   

1 ≤ 𝑞 ≤ 𝑘. The ith component of �̅�𝑞 is 𝐿𝑖𝑞.  

There is an obvious redundancy in (1) in that rescaling �̅�1 is equivalent to rescaling the first 

row of (𝐹). Consequently, we are free to assume the vectors �̅�𝑞 are normalised to unity 

without loss of generality. Hence we put, for all 𝑞, 

|�̅�𝑞|
2

= ∑ (𝐿𝑖𝑞)
2𝑝

𝑖=1 = 1   (9.3) 

Hence, the model, Equ.(1), will reduce the 𝑛𝑝 degrees of freedom of the data to 

𝑘(𝑛 + 𝑝 − 1) parameters to be fitted. 

The interpretation of the model is clarified by considering the meaning of the vectors �̅�𝑞 

if the first row of (𝐹) consists of all 1s, whilst the rest of (𝐹) are zeros. In this case the 

RHS of (9.2), ignoring (𝑒), is simply 𝑛 copies of the column vector �̅�1, which implies that 

all the people answer all the questions identically, and the answer to question 𝑖 is 𝐿𝑖1. If 

the true situation approximated this, then we would conclude that there was one 

strongly dominant “factor” that determined the answers to all question, by most people, 

and that the set of answers which defines this “factor” is 𝐿𝑖1. 

To approximate this situation we would be looking for an (𝐹) matrix whose top row had 

large components but had small components elsewhere. Alternatively, if the top two 

rows of (𝐹) had large components, but the rest were small, then we would conclude 

there were two dominant factors controlling the bulk of people’s answers, and that 

these factors were defined by the sets of answers given by 𝐿𝑖1 and 𝐿𝑖2. Etc. 

A best fit to (9.2) therefore provides a set of factors which are effectively defined by the 

vectors �̅�𝑞 . Thus, the components of �̅�1 provide the “direction in question-space” of the 

first factor, etc. The rows of matrix (𝐹) provide the relative importance of each of these 

factors. 

9.3 PCA: Fitting the Model 

We wish to minimise the sum-of-squared- errors, i.e., this, 

𝜒2 =
1

𝑛𝑝
∑ ∑ (𝑧𝑖𝑚 − ∑ 𝐿𝑖𝑞𝐹𝑞𝑚

𝑘
𝑞=1 )

2𝑛
𝑚=1

𝑝
𝑖=1     (9.4) 

(𝐿) (𝑧) 

(𝐹) 

p 

n 
n 

k 

k 

p 
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This must be minimised wrt variations in both 𝐿𝑖𝑞 and 𝐹𝑞𝑚 but subject to the constraint 

(9.3). Hence, the object function to minimise can be taken to be, 

𝑓 = ∑ ∑ (𝑧𝑖𝑚 − ∑ 𝐿𝑖𝑞𝐹𝑞𝑚
𝑘
𝑞=1 )

2
+𝑛

𝑚=1
𝑝
𝑖=1 ∑ 𝜇𝑞

𝑘
𝑞=1 ∑ (𝐿𝑖𝑞)

2𝑝
𝑖=1  (9.5) 

where 𝜇𝑞 are unknown Lagrange multipliers. Hence we require, 

1

2

𝜕𝑓

𝜕𝐿𝑖𝑞
= − ∑ (𝑧𝑖𝑚 − 𝐿𝑖𝑞𝐹𝑞𝑚)𝐹𝑞𝑚 + 𝜇𝑞𝐿𝑖𝑞

𝑛
𝑚=1 = 0    (9.6a) 

and,   
1

2

𝜕𝑓

𝜕𝐹𝑞𝑚
= − ∑ (𝑧𝑖𝑚 − 𝐿𝑖𝑞𝐹𝑞𝑚)𝐿𝑖𝑞

𝑝
𝑖=1 = 0     (9.6b) 

 
where (9.6a) must hold for all 𝑖 and 𝑞, and (9.6b) must hold for all 𝑞 and 𝑚. But (9.3) means 

that (9.6b) gives, 

𝐹𝑞𝑚 = ∑ 𝑧𝑖𝑚𝐿𝑖𝑞
𝑝
𝑖=1      (9.7) 

(5a) can be re-written, 

𝐿𝑖𝑞 (∑ (𝐹𝑞𝑚)
2

+ 𝜇𝑞
𝑛
𝑚=1 ) = ∑ 𝑧𝑖𝑚𝐹𝑞𝑚

𝑛
𝑚=1   (9.8) 

Inserting (9.7) into the RHS of (9.8) gives, 

∑ 𝑧𝑖𝑚𝐹𝑞𝑚
𝑛
𝑚=1 = ∑ 𝑧𝑖𝑚 ∑ 𝑧𝑗𝑚𝐿𝑗𝑞

𝑝
𝑗=1

𝑛
𝑚=1 = ∑ 𝐶𝑜𝑣𝑖𝑗𝐿𝑗𝑞

𝑝
𝑗=1  (9.9) 

where,    𝐶𝑜𝑣𝑖𝑗 = ∑ 𝑧𝑖𝑚𝑧𝑗𝑚
𝑛
𝑚=1 = ∑ (𝑥𝑖𝑚 − �̅�𝑖)(𝑥𝑗𝑚 − �̅�𝑗)𝑛

𝑚=1  (9.10) 

is the covariance matrix of the original dataset. Using (9.7) again we find, 

𝜆𝑞 ≡ ∑ (𝐹𝑞𝑚)
2

= ∑ (∑ 𝑧𝑖𝑚𝐿𝑖𝑞
𝑝
𝑖=1 )(∑ 𝑧𝑗𝑚𝐿𝑗𝑞

𝑝
𝑗=1 ) = ∑ ∑ 𝐶𝑜𝑣𝑖𝑗𝐿𝑖𝑞𝐿𝑗𝑞

𝑝
𝑗=1

𝑝
𝑖=1

𝑛
𝑚=1

𝑛
𝑚=1          (9.11) 

which is the 𝑞𝑞 diagonal component of the matrix (𝐿)𝑇(𝐶𝑜𝑣)(𝐿). Finally, then (9.8) gives, 

𝐿𝑖𝑞 =
((𝐶𝑜𝑣)(𝐿))

𝑖𝑞

𝜇𝑞+((𝐿)𝑇(𝐶𝑜𝑣)(𝐿))
𝑞𝑞

=
((𝐶𝑜𝑣)(𝐿))

𝑖𝑞

𝜇𝑞+𝜆𝑞
           (9.12) 

In terms of the column vectors, �̅�𝑞, this can be written, 

   (𝐶𝑜𝑣)�̅�𝑞 = (𝜇𝑞 + 𝜆𝑞)�̅�𝑞             (9.13) 

Recall that this is the condition for the best fit, i.e., minimisation of 𝜒2, and we see now that 

the condition reduces to the columns of the matrix (𝐿), i.e., the vectors �̅�𝑞, being the 

eigenvectors of the covariance matrix.  

But substitution of (9.13) in 𝜆𝑞 = ((𝐿)𝑇(𝐶𝑜𝑣)(𝐿))
𝑞𝑞

 gives 𝜆𝑞 = (𝜇𝑞 + 𝜆𝑞), using (9.3). 

Hence, we conclude that at the minimum the Lagrange multipliers are all zero, 𝜇𝑞 = 0. So we 

replace (9.13) with, 

   (𝐶𝑜𝑣)�̅�𝑞 = 𝜆𝑞�̅�𝑞              (9.14) 

This uniquely defines the matrix (𝐿), given also the normalisation, (9.3), and ignoring the 

irrelevance of the order of the columns. The matrix (𝐹) is then given by (9.7).  

QED? Not quite… 
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(𝐶𝑜𝑣) is a 𝑝 × 𝑝 matrix and hence has 𝑝 eigenvalues/eigenvectors – but we wanted only 𝑘 

‘vectors’ �̅�𝑞.  

9.4 PCA: How Many Factors, k, to Include? 

So far we have not specified the number of factors, i.e., the number of columns, 𝑘, in matrix 

(𝐿). Indeed, this is arbitrary except that it must not exceed 𝑝. We will see that using 𝑘 = 𝑝 

will provide a perfect fit with zero errors, but is hardly of any use as it fails to “compactify” 

the original set of questions. The fewer the factors included, the less good the fit will be, but 

the more compact the description of the data. An optimal number may be sought in terms of 

the diminishing returns of including any additional factors. To aid judgment we need to know 

the contribution to the reduction of 𝜒2 each additional factor makes. It turns out that the 

answer to that is simply the eigenvalue, 𝜆𝑞. Hence, the dominant factors are determined by 

the magnitude of their corresponding eigenvalues. 

To see this, note that, 

𝜒2 = ∑ ∑ [(∑ 𝐿𝑖𝑞𝐹𝑞𝑚
𝑘
𝑞=1 )

2
− 2𝑧𝑖𝑚 ∑ 𝐿𝑖𝑞𝐹𝑞𝑚 +𝑘

𝑞=1 𝑧𝑖𝑚
2 ]𝑛

𝑚=1
𝑝
𝑖=1          (9.15) 

But   ∑ ∑ (𝐿𝑖𝑞𝐹𝑞𝑚)
2

=𝑛
𝑚=1

𝑝
𝑖=1 ∑ (𝐹𝑞𝑚)

2𝑛
𝑚=1  by (2) 

And  ∑ (𝐹𝑞𝑚)
2𝑛

𝑚=1 = ∑ ∑ 𝑧𝑖𝑚𝐿𝑖𝑞
𝑝
𝑖=1 ∑ 𝑧𝑗𝑚𝐿𝑗𝑞

𝑝
𝑗=1

𝑛
𝑚=1 = ∑ ∑ 𝐶𝑜𝑣𝑖𝑗𝐿𝑖𝑞𝐿𝑗𝑞 = 𝜆𝑞

𝑝
𝑗=1

𝑝
𝑖=1  (9.16) 

But also, 

∑ ∑ 𝑧𝑖𝑚𝐿𝑖𝑞𝐹𝑞𝑚
𝑛
𝑚=1

𝑝
𝑖=1 = ∑ ∑ 𝑧𝑖𝑚𝐿𝑖𝑞 ∑ 𝑧𝑗𝑚𝐿𝑗𝑞 = ∑ ∑ 𝐶𝑜𝑣𝑖𝑗𝐿𝑖𝑞𝐿𝑗𝑞 = 𝜆𝑞

𝑝
𝑗=1

𝑝
𝑖=1

𝑝
𝑗=1

𝑛
𝑚=1

𝑝
𝑖=1 (9.17) 

And also ∑ ∑ 𝑧𝑖𝑚
2𝑛

𝑚=1 = 𝑇𝑟(𝐶𝑜𝑣)𝑝
𝑖=1 , the trace of the covariance matrix. So (9.15) becomes, 

𝜒2 = 𝑇𝑟(𝐶𝑜𝑣) − ∑ 𝜆𝑞
𝑘
𝑞=1             (9.18) 

But as the 𝜆𝑞 are the eigenvalues of the covariance matrix, and because the covariance 

matrix, being real symmetric, can be diagonalised with the diagonal elements being its 

eigenvalues, it follows that 𝑇𝑟(𝐶𝑜𝑣) is just the sum of all 𝑝 of its eigenvalues. Hence, 

𝜒2 = ∑ 𝜆𝑞
𝑝
𝑞=1 − ∑ 𝜆𝑞

𝑘
𝑞=1             (9.19) 

Hence, the error is zero if we allow 𝑘 = 𝑝. Moreover, as claimed above, the reduction in the 

sum-over-the-squared-errors, 𝜒2, due to adding a further factor is just the eigenvalue of that 

new factor. A pragmatic optimum number of factors, k, to include might be decided on the 

basis of the ratio, 

    𝜉 =
∑ 𝜆𝑞

𝑘
𝑞=1

∑ 𝜆𝑞
𝑝
𝑞=1

              (9.20) 

being sufficiently close to 1, e.g., 0.95, say.  

10. Factor Analysis (FA) 

10.1 FA: The Formulation 

Factor Analysis uses essentially the same model as (9.2) except that the data is normalised by 

the standard deviations across people (and so now comprises the coefficients of variation), 
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   �̂�𝑖𝑚 =
𝑥𝑖𝑚−�̅�𝑖

𝜎𝑖
 where,    𝜎𝑖 = √

1

𝑛
∑ (𝑥𝑖𝑚 − �̅�𝑖)2𝑛

𝑚=1           (10.1) 

and the model becomes, 

(�̂�) = (𝐿)(𝐹) + (𝑒)            (10.2) 

i.e.,     �̂�𝑖𝑚 = ∑ 𝐿𝑖𝑞𝐹𝑞𝑚
𝑘
𝑞=1 + 𝑒𝑖𝑚 

Unlike PCA the vectors �̅�𝑞 are not normalised. Instead the rows of the (𝐹) matrix are 

normalised. These row vectors are denoted �̅�𝑞, the mth component of which is 𝐹𝑞𝑚. Factor 

analysis makes two assumptions, 

(i) The row vectors �̅�𝑞 are orthogonal as well as normalised, i.e., �̅�𝑞 ∙ �̅�𝑞′ = 𝛿𝑞𝑞′. Note that 

this can be written ∑ 𝐹𝑞𝑚𝐹𝑞′𝑚
𝑛
𝑚=1 = 𝛿𝑞𝑞′ which also means the �̅�𝑞 are uncorrelated. 

(ii) The row vectors �̅�𝑞 are also uncorrelated with the errors, i.e., ∑ 𝐹𝑞𝑚𝑒𝑖𝑚
𝑛
𝑚=1 = 0.  

Theorem:   ∑ �̂�𝑖𝑚�̂�𝑗𝑚 = ∑ 𝐿𝑖𝑞𝐿𝑗𝑞
𝑘
𝑞=1

𝑛
𝑚=1 + ∑ 𝑒𝑖𝑚𝑒𝑗𝑚

𝑛
𝑚=1           (10.3) 

Proof:   ∑ �̂�𝑖𝑚�̂�𝑗𝑚 =𝑛
𝑚=1 ∑ (∑ 𝐿𝑖𝑞𝐹𝑞𝑚

𝑘
𝑞=1 + 𝑒𝑖𝑚)(∑ 𝐿𝑗𝑞𝐹𝑞𝑚

𝑘
𝑞=1 + 𝑒𝑗𝑚)𝑛

𝑚=1  

But, using (i) above, 

 ∑ ∑ 𝐿𝑖𝑞𝐹𝑞𝑚 ∑ 𝐿𝑗𝑞′𝐹𝑞′𝑚 = ∑ ∑ 𝐿𝑖𝑞𝐿𝑗𝑞′𝛿𝑞𝑞′ = ∑ 𝐿𝑖𝑞𝐿𝑗𝑞
𝑘
𝑞=1

𝑘
𝑞=1

𝑘
𝑞=1

𝑘
𝑞′=1

𝑘
𝑞=1

𝑛
𝑚=1          (10.4) 

whilst the cross-terms are zero due to (ii), i.e., 

∑ (∑ 𝐿𝑖𝑞𝐹𝑞𝑚
𝑘
𝑞=1 𝑒𝑗𝑚) = 0𝑛

𝑚=1   

Hence we are left with (10.3). QED.  

Now the covariance matrix of the errors is, 

    (𝐶𝑜𝑣𝑒)𝑖𝑗 = ∑ 𝑒𝑖𝑚𝑒𝑗𝑚
𝑛
𝑚=1             (10.5) 

Whilst the correlation matrix of the data is, 

(𝐶𝑜𝑟)𝑖𝑗 = ∑ �̂�𝑖𝑚�̂�𝑗𝑚
𝑛
𝑚=1             (10.6) 

Hence (10.3) can be written, 

(𝐶𝑜𝑣𝑒)𝑖𝑗 = (𝐶𝑜𝑟)𝑖𝑗 − ∑ 𝐿𝑖𝑞𝐿𝑗𝑞
𝑘
𝑞=1            (10.7) 

Finally, in Factor Analysis the minimum is sought of the sum-of-squares of the off-diagonal 

error covariances, 

휀2 = ∑ ((𝐶𝑜𝑣𝑒)𝑖𝑗)
2𝑝

𝑖,𝑗=1
𝑖≠𝑗

            (10.8) 

This differs from minimising 𝜒2, (9.4), because the latter includes the on-diagonal terms in 

the sum. Purists regard the minimisation of 휀2, (10.8), as being more valid for reasons I shall 

not attempt to reproduce. Hence, for a given correlation matrix over the data we seek to 

minimise, with respect to unconstrained variations in 𝐿𝑖𝑞, the function, 

휀2 = ∑ ((𝐶𝑜𝑟)𝑖𝑗 − ∑ 𝐿𝑖𝑞𝐿𝑗𝑞
𝑘
𝑞=1 )

2𝑝
𝑖,𝑗=1
𝑖≠𝑗

           (10.9) 
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The minimisation is unconstrained because the 𝐿𝑖𝑞 are not required to be normalised. Note 

that, unlike the minimisation of 𝜒2, (9.4), variations in 𝐹𝑞𝑚 do not feature and the (𝐹) matrix 

is not determined by the minimisation of 휀2, (10.9). Only the “factors”, i.e., the �̅�𝑞, are found.  

Moreover, even the factors are not uniquely determined because, if (𝛬) is any 𝑘 × 𝑘 real 

orthogonal matrix and we replace (𝐿) → (𝐿)(𝛬) and (𝐹) → (𝛬)𝑇(𝐹) then (𝐿)(𝐹) is invariant 

and the orthonormal condition, (i), above, is also preserved. Hence Factor Analysis only 

determines the factors up to an arbitrary rotation in the 𝑘-dimensional factor space. For this 

reason I prefer PCA to FA because the latter gives unique factors. 

10.2 FA: How Many Factors to Include? 

There is no standard answer to this in the literature as far as I am aware. What I suggest is 

judging the matter based upon the quantities, 

𝜓𝑞 = ∑ 𝐿𝑖𝑞𝐿𝑗𝑞
𝑝
𝑖,𝑗=1
𝑖≠𝑗

          (10.10) 

Larger 𝜓𝑞 will reduce 휀2 more and so are more significant. So, analogous to (9.20), and 

assuming the 𝜓𝑞 are ordered in terms of decreasing magnitude, one might adopt a criterion to 

include 𝑘 factors where 𝑘 is the smallest integer such that, 

 𝜉 =
∑ 𝜓𝑞(𝑘)

𝑘
𝑞=1

∑ 𝜓𝑞(𝑝)
𝑝
𝑞=1

> 0.95 (say)         (10.11) 

where 𝜓𝑞(𝑘) are the values of (10.10) resulting from optimising based on 𝑘 factors and 𝜓𝑞(𝑝) 

the result of optimising based on 𝑝 factors. The latter would be expected to be an exact fit, so 

that 휀2 = 0 and so (27) gives the criterion as, 

𝜉 =
∑ 𝜓𝑞(𝑘)

𝑘
𝑞=1

∑ (𝐶𝑜𝑟)𝑖𝑗
𝑝
𝑖,𝑗=1

𝑖≠𝑗

> 0.95 (say)         (10.12) 

10.3 FA: A Solution Algorithm  

Methods for solving the minimisation of 휀2, (10.9), abound in the literature. I have used my 

own method, based on evaluating partial derivatives numerically and then using the method 

of steepest descents. It appeared robust and gave exact fits when 𝑘 was set to 𝑝. This is it, 

[1] Choose some starting �̅�𝑞 (e.g., the eigenvectors of the covariance matrix, the solution for 

PCA); 

[2] Estimate the 𝑝 × 𝑘 partial derivatives 
𝜕𝜀2

𝜕𝐿𝑖𝑞
 numerically using the finite differences for 

some small increments ∆𝐿𝑖𝑞; 

[3] Set the next iteration for the �̅�𝑞 using 𝐿𝑖𝑞 → 𝐿𝑖𝑞 − 𝜏
𝜕𝜀2

𝜕𝐿𝑖𝑞
 for some small 𝜏; 

[4] Repeat and expect convergence to unchanging 𝐿𝑖𝑞 as the minimum is approached 

(because then all the 
𝜕𝜀2

𝜕𝐿𝑖𝑞
 will be zero).  

[5] Confirm robustness of result by sensitivity to change in ∆𝐿𝑖𝑞 and 𝜏. 
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11. Singular Value Decomposition (SVD) 

11.1 What is SVD? 

Singular Value Decomposition is not a statistical method but a method for diagonalising a 

matrix. A description of it is included here in order to bring out its relationship with Principal 

Component Analysis. 

Singular Value Decomposition refers to the representation of an arbitrary complex matrix, 

(𝑀), which will in general be rectangular (𝑚 × 𝑛), in the form, 

(𝑀) = (𝑈)(Σ)(𝑉)+    (11.1) 

where + denotes the complex transpose (Hermitian conjugate), and where (𝑈) is an 𝑚 × 𝑚 

unitary matrix and (𝑉) is an 𝑛 × 𝑛 unitary matrix, and (Σ) is a diagonal matrix (in general 

rectangular, 𝑚 × 𝑛). A rectangular diagonal matrix is such that, 

 Σ𝑖𝑗 = 𝜎𝑖𝛿𝑖𝑗     (11.2) 

which applies despite the range of the two subscripts being different in general. Providing we 

agree on the order of the diagonal terms in (Σ), say in descending order of magnitude, then 

(Σ) is uniquely determined for a given (𝑀).  

(𝑈) and (𝑉) will, in general, be complex when (𝑀) is complex. But if (𝑀) is real then (𝑈) 

and (𝑉) will be real orthogonal matrices. 

The decomposition, (11.1), always exists for arbitrary complex (𝑀). 

The key observation is that, for (𝑀) an arbitrary complex matrix, (𝑀)(𝑀)+ and (𝑀)+(𝑀) 

are both Hermitian and hence both are diagonalised by unitary matrices whose columns are 

their eigenvectors and whose diagonalised components are their (real) eigenvalues. But using 

(11.1) we have, 

(𝑀)(𝑀)+ = (𝑈)(Σ)(𝑉)+(𝑉)(Σ)+(𝑈) = (𝑈)(Σ)(Σ)+(𝑈)+  (11.3) 

This establishes that (Σ)(Σ)+, which is diagonal and whose components are |𝜎𝑖|2 (other than 

possible additional zeros) is also the diagonalisation of (𝑀)(𝑀)+, i.e., the eigenvalues of 

(𝑀)(𝑀)+ are |𝜎𝑖|2. Note that (𝑀)(𝑀)+ is 𝑚 × 𝑚 and so, if 𝑚 ≤ 𝑛, the |𝜎𝑖|2 are its 𝑚 

eigenvalues. If 𝑚 > 𝑛 then |𝜎𝑖|2 are its first 𝑛 eigenvalues, the rest being zeros.  

(11.3) also establishes that the unitary matrix (𝑈) consists of columns which are the 

eigenvectors of (𝑀)(𝑀)+. [Note that it is (𝑈)+(𝑀)(𝑀)+(𝑈) which is diagonal]. 

In the same way, we have, 

(𝑀)+(𝑀) = (𝑉)(Σ)+(𝑈)+(𝑈)(Σ)(𝑉)+ = (𝑉)(Σ)+(Σ)(𝑉)+  (11.4) 

This establishes that (Σ)+(Σ), which is diagonal and whose components are |𝜎𝑖|2 (other than 

possible additional zeros) is also the diagonalisation of (𝑀)+(𝑀), i.e., the eigenvalues of 

(𝑀)+(𝑀) are |𝜎𝑖|2. Note that (𝑀)+(𝑀) is 𝑛 × 𝑛 and so, if 𝑛 ≤ 𝑚, the |𝜎𝑖|2 are its 𝑛 

eigenvalues. If 𝑛 > 𝑚 then |𝜎𝑖|2 are its first 𝑚 eigenvalues, the rest being zeros.  

(4) also establishes that the unitary matrix (𝑉) consists of columns which are the eigenvectors 

of (𝑀)+(𝑀).  
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The alert will spot that I have not proved the existence of the decomposition, (11.1), in the 

general case – I have merely assumed it in deriving (11.3, 11.4). For rigorous existence 

proofs see standard sources. However, assuming existence, the required unitary matrices, (𝑈) 

and (𝑉), are found via solving for the eigenvectors of (𝑀)(𝑀)+ and (𝑀)+(𝑀). 

The 𝜎𝑖 are known as the singular values of the matrix (𝑀) and are uniquely determined by 

the matrix (other than arbitrary order, which, by convention, it is usual to put in descending 

order, with trailing additional zeros).  

Note that solving for the eigenvalues of (𝑀)(𝑀)+ or (𝑀)+(𝑀) only provides |𝜎𝑖|2 and so 

does not provide the complex phase of the singular values themselves, 𝜎𝑖. Even in the case of 

real matrices the sign of the singular values is not determined. However, as (𝑈) and (𝑉) are 

given by the eigenvector solution, the singular values follow straight away by inverting (1), 

i.e., (Σ) = (𝑈)+(𝑀)(𝑉).  

11.2 Relevance in Principal Component Analysis (PCA) 

The factor vectors, �̅�𝑞, in PCA are the eigenvectors of the covariance matrix of the data. Now 

the data is given by the rectangular matrix (𝑧) with components 𝑧𝑖𝑚 where (typically) 𝑖 runs 

from 1 to the number of observations per person (p), and 𝑚 runs from 1 to the number of 

people (𝑛). This (𝑧) is assumed to have the means-over-people already subtracted. So the 

covariance matrix is, 

(𝑧)(𝑧)+ = (𝑧)(𝑧)𝑇 for real data   (11.5)  

with components, 

(𝐶𝑜𝑣)𝑖𝑗 = ∑ 𝑧𝑖𝑚𝑧𝑗𝑚
𝑛
𝑚=1     (11.6) 

Hence, considering the singular value decomposition of the data matrix itself, 

(𝑧) = (𝑈)(Σ)(𝑉)+     (11.7) 

It follows that the factor vectors, �̅�𝑞, of PCA are just the columns of matrix (𝑈), and the 

absolute squares of the components of (Σ) are the eigenvalues of the covariance matrix  

whose magnitudes indicate the relative importance of the contributions of the factors to the 

observations.  

12. Inference (Prediction from Models) 

“Inference” is an umbrella term for any process of judging unobserved quantities from 

available observations or knowledge, including making predictions. 

We have already considered two sorts of inference in sections 4 and 5. In the type of Monte 

Carlo simulation considered in section 4 it was assumed that a sound theoretical framework 

was available to calculate the outcome variable(s), e.g., time to structural failure, given 

specific values for certain independent variables (e.g., yield strength, UTS, operating 

temperatures, etc etc). The uncertainty in the outcome variable(s) was then a result purely of 

the uncertainties in the independent variables. Monte Carlo simulations of this type aimed to 

estimate the distribution of the outcome (e.g., probability of failure in a given time) given the 

distributions of the independent variables. But this is not the only sort of Monte Carlo 

simulation. 
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In section 5 we considered the case where the dependence of the outcome variable(s) on the 

independent variables is not known via some theoretical framework. Instead it is 

hypothesised that the outcome depends upon certain functions, 𝑓𝑖(�̅�), of the independent 

variables, �̅�, but the relative weighting of these different functions in determining the 

outcome is unknown. The outcome is then expressed as ∑ 𝐴𝑖𝑓𝑖(�̅�)𝑛
𝑖=1  and hence is linearly 

dependent on the unknown coefficients 𝐴𝑖 which are to be determined by the regression 

procedure. The particular algebraic form of ∑ 𝐴𝑖𝑓𝑖(�̅�)𝑛
𝑖=1  is often referred to as “the model”. 

A special case is the assumption of linear dependence on all the independent variables, 

∑ 𝐴𝑗𝑥𝑗
𝑚
𝑗=1 .  

A generalisation of regression is to consider models which have some non-linear dependence 

on the unknown coefficients, as well as on the independent variables, 𝐹(�̅�, �̅�). There is no 

numerical algorithm that guarantees to find the optimum fit to such a non-linear function of 

the unknown coefficients, �̅�. However, various software platforms offer solution facilities 

which may (or may not) be effective. The generic problem is that algorithms tend to get stuck 

in local minima rather than finding the global minimum. An example of an algorithm with 

this shortcoming was given in §10.3, essentially the method of steepest descents. Although 

this appears to work well in the case of Factor Analysis there is no guarantee that it will 

perform well on other problems.  

12.1 Maximum Likelihood 

There is, however, another situation in which inference is required. This arises when we do 

not even have any knowledge of any independent variables upon which the outcome 

variables may depend, and perhaps not even a theoretical framework that would be a guide to 

what factors might determine the outcome. In such cases we may only have knowledge of the 

history of previous outcomes. This is best illustrated by a specific example. 

Consider a set of 𝑁 nominal similar structures or components. Over a number of years of 

operation there have been a few failures. These failures are known to result by first initiating 

a crack in service which then grows in service to failure. Periodic inspections are carried out 

and these have revealed some initiated cracks from time to time, these being caught before 

they could grow to failure. The challenge is to estimate the probability of a failure in some 

future operating period given only the history of failures and discovered cracks but without 

any quantifiable structural mechanism.  

There may be a temptation to attempt fitting a model using just the data of failures and 

discovered cracks. But this would be to overlook that the most significant constraint on the 

problem is that the bulk of components have operated successfully without cracking or 

failure. For example, suppose there were 100 components, each of which has been inspected, 

on average, three times over the life of the plant to date (say 30 years). In that time there have 

been 2 failures and 4 discovered cracks. This compares with circa 300 inspections, 296 of 

which were crack-free. To produce a Monte Carlo simulation in order to predict the 

probability of future failures, one approach is to assume some pdf for the service time 

required to initiate a crack, and another pdf for the additional service period to grow a just-

detectable crack to failure. These pdfs will include some unknown parameters (see the 

examples in section 2). Call these 𝐴𝑖. The challenge is to find the values of these parameters 

which best fits the history, where the history comprises, 
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(i) In each year, the components which failed; 

(ii) In each year, the components which were discovered to be cracked; 

(iii) In each year, the components which were inspected and shown to be uncracked; 

A Monte Carlo code can be written which, for any given values of the coefficients, 𝐴𝑖, will, 

by random sampling of the pdfs, “predict” (i.e., postdict) (i), (ii) and (iii). Unless you are 

lucky the chances are that the “predicted” outcomes for (i), (ii) and (iii) will not agree with 

the actual history. However, some will and these successful trials are what are sought. 

Running, say, 10,000 trials may only produce a handful of successful trials for a given set of 

coefficients, 𝐴𝑖. However, a different set of coefficients, 𝐴𝑖, may produce a larger number of 

successful trials. The larger the proportion of trials which are successful, the greater the 

likelihood that the chosen set of coefficients, 𝐴𝑖, are optimal. This defines the term 

“likelihood”.  

Suppose the actual historical record is denoted symbolically by 𝐻. This denotes the observed 

facts. In Bayesian terminology the likelihood is the conditional probability that the history is 

reproduced given the set of coefficients, 𝐴𝑖. This is denoted 𝑃(𝐻|𝐴𝑖), the probability of 𝐻 

given 𝐴𝑖.  

The Maximum Likelihood method of inference seeks to determine the coefficients, 𝐴𝑖, by 

maximising 𝑃(𝐻|𝐴𝑖), i.e., maximising the proportion of successful trials. 

In many situations this is a perfectly decent method. However, there are situations in which 

this might be misleading. 

12.2 Bayesian Inference 

A moment’s thought shows that, in principle, 𝑃(𝐻|𝐴𝑖) is not what we want to maximise. The 

reason is simple: it is not actually the coefficients, 𝐴𝑖, that we are given but the history, 𝐻. We 

really want to maximise the probability of the coefficients, 𝐴𝑖, given the history, 𝐻. That is, 

we should ideally be maximising 𝑃(𝐴𝑖|𝐻). The two conditional probabilities are related by 

Bayes Theorem, which tells us that, 

𝑃(𝐴𝑖|𝐻) =
𝑃(𝐻|𝐴𝑖)𝑃(𝐴𝑖)

𝑃(𝐻)
    (12.1) 

In Bayesian speak, whilst 𝑃(𝐻|𝐴𝑖) is the “likelihood”, 𝑃(𝐴𝑖|𝐻) is known as the “posterior 

probability”. In these general terms, 𝐻 would be called the “evidence” whilst the 𝐴𝑖 

constitute an “hypothesis”. The denominator in (12.1), 𝑃(𝐻), just acts as a normalising factor. 

This can be seen because 𝑃(𝐻) = ∫ 𝑃(𝐻|𝐴𝑖)𝑃(𝐴𝑖)𝑑𝐴𝑖 so that (12.1) becomes, 

𝑃(𝐴𝑖|𝐻) =
𝑃(𝐻|𝐴𝑖)𝑃(𝐴𝑖)

∫ 𝑃(𝐻|𝐴𝑖)𝑃(𝐴𝑖)𝑑𝐴𝑖
    (12.2) 

which is now independent of 𝑃(𝐻).  

The key difference between Bayesian inference using (12.1) and the method of Maximum 

Likelihood is the presence of 𝑃(𝐴𝑖), known as “the prior” – that is, the prior probability of 

the set of coefficients, 𝐴𝑖, before the evidence (data), 𝐻, is taken into account.  

The importance of the prior in practical applications may be illustrated by a medical example. 

The evidence, 𝐻, may be a positive test result whilst the unknown, represented by 𝐴𝑖, is 

actually having the medical condition. The “likelihood”, 𝑃(𝐻|𝐴𝑖), is therefore the probability 

of a positive test result given that you have the condition (called the “sensitivity”, or true 
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positive rate, of the test). In contrast, 𝑃(𝐴𝑖|𝐻) is the probability of having the medical 

condition given a positive test result. This is what you, as the patient, really want to know if 

you have just had a positive test result. The public will tend to confuse 𝑃(𝐴𝑖|𝐻) with 

𝑃(𝐻|𝐴𝑖). If the sensitivity of the test is, say, 80% this leads people to conclude, falsely, that 

they have an 80% chance of having the condition.  

But what if the prevalence of the disease among the public is such that the probability of you 

having the condition before the test was performed, i.e., the prior, 𝑃(𝐴𝑖), was only 1%? If we 

also assume that the specificity of the test, i.e., the true negative rate, is (say) 90%, the all-

important posterior probability (that you really have the condition) is actually only 7.5%, a 

rather more comforting conclusion.  

Warning: In real medical circumstances the above is likely to be wrong! This is because, if 

you have been given the test, it is likely to be because you have some symptoms and perhaps 

some familial background or lifestyle issue which your doctor has judged may indicate the 

condition. So the “prior” for you will be greater than the 1% applicable to a random member 

of the public. But what is it? In practice, the devil is in the prior when applying Bayesian 

inference. 

How does the Maximum Likelihood method of §12.1 get around this? In truth it doesn’t – it 

just glosses over it. One might be tempted to consider Maximum Likelihood to result from 

the more rigorous Bayesian approach when the prior is a flat distribution, i.e., when there is 

no reason before the data was collected (or the history known) to prefer one set of 

coefficients, 𝐴𝑖, to another. This is partly valid but does not really avoid an issue of principle: 

there is no such thing as a flat distribution over an infinite domain. A distribution can be flat 

only if confined between some finite minimum and some finite maximum. And so, even for a 

flat distribution, the “prior” still exists as the specification of these finite bounds. This was 

glossed over in the presentation of Maximum Likelihood but in practice the numerical 

determination of the likelihood can only be done for a finite range of 𝐴𝑖. Credibility is 

achieved by showing that the likelihood that results at the extremities of the range of 𝐴𝑖 

considered is small compared with the likelihood identified at the candidate optimal solution. 

However, there is then an act of faith that an improved solution (a greater likelihood) could 

not be found outside the range of 𝐴𝑖 considered.  

Bayesian inference, and more sophisticated inference techniques, have a large and 

sophisticated literature. But here we would enter the territory of machine learning, a 

discipline which has undergone a revolution in the last few years but is beyond the scope of 

this short note. 

 

 


